
Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 1(37)

PSIRP
Publish-Subscribe Internet Routing Paradigm

FP7-INFSO-ICT-216173

DELIVERABLE D3.2

Implementation Plan based on Conceptual
Architecture

Title of Contract Publish-Subscribe Internet Routing Paradigm
Acronym PSIRP
Contract Number FP7-INFSO-ICT 216173
Start date of the project 1.1.2008
Duration 30 months, until 30.6.2010
Document Title Implementation Plan based on Conceptual Architecture
Date of preparation 30.9.2008
Authors Petri Jokela (LMF), Janne Tuononen (NSN), Teemu

Rinta-aho (LMF), Jukka Ylitalo (LMF), Dirk Trossen
(BT), Dmitrij Lagutin (HIIT), Janne Riihijärvi (RWTH),
George Xylomenos (AUEB-RC), Jimmy Kjällman (LMF),
András Zahemszky (LMF), András Császár (ETH), Jari
Keinänen (LMF),

Responsible of the deliverable Petri Jokela
 Phone: +358442992413
 Email: petri.jokela@ericsson.com

Reviewed by Dirk Trossen, Janne Riihijärvi, Chris Reason, George
Xylomenos

Target Dissemination Level Public
Status of the Document Completed
Version 1.0
Document location http:// www.psirp.org/publications/
Project web site http://www.psirp.org/

This document has been produced in the context of the PSIRP Project. The PSIRP Project is part of
the European Community’s Seventh Framework Program for research and is as such funded by the
European Commission. All information in this document is provided “as is” and no guarantee or
warranty is given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability. For the avoidance of all doubts, the European Commission has
no liability in respect of this document, which is merely representing the authors view.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 2(37)

Table of Contents

1 Introduction ...3
2 Testing Implementations ...3

2.1 Existing test networks/plans for new ones ...3
2.2 Emulation/Simulation ...4

3 Functional Overview..5
3.1 Applications..8

3.1.1 Current applications and application innovation process......................................8
3.1.2 Firefox Plugin..8
3.1.3 Multicast Bit Torrent..8
3.1.4 Socket’s API Emulator ..9

3.2 Rendezvous...10
3.2.1 Global Rendezvous Framework ...10
3.2.2 Scope Rendezvous Subsystem..11
3.2.3 Host Local Rendezvous Subsystem...11
3.2.4 Rendezvous Identifier ...11
3.2.5 Global Rendezvous Scope and Framework ...11

3.3 Topology ..11
3.4 Forwarding ...12
3.5 Packet Level Authentication (PLA) ..12

3.5.1 Cryptographic solutions and hardware acceleration...13
3.5.2 PLA Protocol...13

3.6 Network Attachment...14
3.6.1 Operations ..15
3.6.2 Participants ...15
3.6.3 Relation to other functions ..15

3.7 Interfaces ...15
4 Work Plan ...16

4.1 Implementation Overview ..16
4.1.1 Architecture...16
4.1.2 Network Nodes ...17
4.1.3 Signaling Model ..17

4.2 Helper Functions..20
4.2.1 Rendezvous..20
4.2.2 Topology...24
4.2.3 Network Attachment ...24

4.3 PSIRP Daemon and I/O...26
4.3.1 PSIRP I/O module ..26
4.3.2 PSIRP Daemon ..26
4.3.3 PSIRP Daemon and PSIRP I/O Interaction ..28
4.3.4 Network I/O...32
4.3.5 NetFPGA ..32

4.4 PSIRP API and Module Interfaces...32
4.4.1 Libpsirp ...33
4.4.2 API ..33
4.4.3 Advanced API ...34
4.4.4 Module interfaces ...34

5 Abbreviations ..35
6 References..36

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 3(37)

1 Introduction
In PSIRP, implementation and architecture are intertwined in an approach of continuous
development, establishing a methodology that combines top-down architecture with bottom-up
implementation work. This leads to a macro-cycle of development, defining distinct phases (or
rounds) for the architecture as well as for the implementation. Given this methodology of
working, it must be understood that it is very difficult to make detailed implementation plans
that can span all these phases. Instead, the intention of this document is to provide a more
detailed description for the work in the first round with less detail about the work that will be
performed towards the end of the project. The first iteration/round is concrete in the sense that
it is based on our current understanding of the architecture as captured in D2.2 [1].
Refinements of the plan throughout the project will follow the increased understanding gained
by the partners during the architecture and implementation work. In addition, it is expected
that the evaluation work, on the simulative as well as the experimental level, will influence and
therefore refine the plans for the next implementation rounds beyond the first one.

With that in mind, this document starts by presenting the implementation system and provides
guidelines for evaluating and testing the system. After that, the implementation is presented,
starting from the current understanding of the architecture. The required functionality is
described and the system operation, as it is seen now, is presented. For this purpose, the
document specifies the detailed implementation plan for the so called Lower layer
implementation (LoLI) and Upper layer implementation (UpLI). These layers implement the
operations required for rendezvous, topology management, and packet forwarding, thus
covering the functions required to support internetworking in publish/subscribe networks. In
addition, this document specifies the required interfaces, both the Application Programming
Interface (API) that provides the functions necessary for application development, and the
internal interfaces needed for inter-process communication within and between the layers. For
this reason, the document also describes the resulting node architecture in which the lower
and upper layer implementations are combined.

2 Testing Implementations
In this section we discuss the plans for testing the prototype implementation during
development activities. More detailed evaluation also dealing with quantifying the scalability of
the implementation and the overall PSIRP architecture is carried out together with WP4. Initial
plans of these activities are documented in deliverable D4.1 [22], and will be further refined as
the next cycles of prototyping activities are planned in detail.

2.1 Existing test networks/plans for new ones
Testing the PSIRP prototype in real test networks in crucial for a component-level testing of
the implementation concepts. Such testing can take place in dedicated test networks within a
PSIRP partner or within larger test networks. The former is likely to happen for a limited test of
the feature interactions of the prototype. Stress testing entire components, such as
rendezvous or forwarding, but also testing PSIRP under application load, is likely to take place
in larger test networks.

One of these larger test networks is Planetlab [2], a contributory research facility that
originated as an effort to create a large-scale facility that allows for testing new Internet-based
technologies and services. Some partners in PSIRP are partners of the Planetlab consortium,
enabling access to this platform. Running so-called slices (virtualized test networks) in this
environment will enable testing certain aspects of the PSIRP prototype at a scale that is
impossible to achieve within the limited partner test networks.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 4(37)

The EU FP7 project Onelab2 [3] maintains the European partition of Planetlab, called
Planetlab Europe. Within the current structure of Onelab2, the work package 7 on data-centric
networking focuses on extending Planetlab towards the specific requirements of projects like
PSIRP (more concretely, the work items in this work package foresee extensions towards
publish/subscribe as well as content delivery networks). BT is leading this work package in
Onelab2. PSIRP has been identified as the main customer project for this task in Onelab2.
This opens the possibility to shape new test networks, optimized to the proposed designs that
PSIRP will develop throughout this project. It is therefore expected that platform-related
requirements from the PSIRP architecture work will find entry in the work of Onelab2. Early
prototypes of the Planetlab extensions, developed in Onelab2, can be exploited to ease
testing of the PSIRP components. The special relation of PSIRP to Onelab2 and the current
engagement of some partners in Planetlab in general, provide the possibility to perform
prototype tests in relatively large and global test networks.

In addition to Planetlab, the National Research Networks (NRENs) provide the ability to test
PSIRP prototypes, e.g., directly over dark fibre, where this is available. Relations exist at
several partner sites to connect to the local NRENs. This, however, requires the availability of
the PSIRP prototype over optical fibre technologies.

2.2 Emulation/Simulation
Network emulation is a work item where the Implementation and Evaluation work packages
meet as it entails interconnecting a packet-level network simulator with the prototype. The
planned emulation architecture is illustrated in Figure 1. Besides building an actual test bed
with a few physical nodes, we plan to connect the prototype nodes to a network emulator that
is capable of receiving packets from the physical test bed, thus simulating packet
transmissions towards the simulated network, and sending out packets through a physical
interface from the simulator to the real test bed. There are two reasons why this approach is
beneficial. First, it allows large-scale testing of the actual implementation by investigating
whether the implementation code works correctly even when there are multiple rendezvous
points and numerous forwarding nodes in the network domain. Secondly, it allows the large-
scale testing of the proposed architecture and protocols without requiring a separate
implementation, i.e., it allows re-use of the implementation code for validation purposes.

We plan to use the new ns-3 [21] network simulator’s emulation functionality. Although
emulation support was not yet included into the first release that came out in June 2008,
according to the current tentative roadmap, it will be the part of the third stable release due in
November 2008. At the time of the writing, the development code for network emulation was
available in the source repository of ns-3. Early experiments with the development version of
the emulator using the included example scripts have shown that it is possible to send real
packets from the ns-3 simulator through a physical attached interface to the real network. We
have to note that if the planned network emulator is not available in the stable revision of ns-3,
it is possible that we will not able to use it and testing plans will have to be updated
accordingly.

For the actual code in ns-3 there are two options:

1. Use the existing prototype code and port as much as possible of it to ns-3. This would
allow larger scale validation of the implementation code itself.

2. Define a protocol interface and implement a simulator specific simplified model of the
architecture in ns-3. In this scenario, the real prototype will communicate with the
simplified simulator using a well-defined interface allowing a larger topology to be
simulated. In other words, the real test bed would behave as if it was part of a big network.
This could also reveal interesting characteristics of the inter-domain network behavior.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 5(37)

Network emulation could also be important when the prototype code is still under heavy
development as it allows quick testing of some features of the prototype even when other
parts of the prototype are not ready. For this purpose, simplified code can be used in the
simulator, which is usually quicker to implement than the actual prototype.

Figure 1 - The ns-3 emulation architecture

3 Functional Overview
This section provides an overview of the current network architecture and its components,
based on the latest conceptual architectural deliverable [1]. At a very high level, the PSIRP
architecture consists of three parts: the component wheel, which defines how the components
are organized within a singe node, the networking architecture, which defines how a collection
of nodes co-operate in order to create a publish/subscribe network, and the service model,
which defines the interfaces provided to publishers, subscribers and network services.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 6(37)

Figure 2 - The PSIRP component wheel

The component wheel, shown in Figure 2, replaces a traditional layered network protocol
stack: it is a layerless collection of components implementing the various PSIRP protocols;
these components also communicate between themselves in publish/subscribe style. The
rendezvous component resolves the rendezvous identifiers provided by publishers and
subscribers of data to forwarding identifiers used for data delivery within a publication’s scope.
This scope may reflect either a topological usage, i.e., a publication is available to link-local,
intra-domain or inter-domain subscribers, or a semantic usage, where a publication is
available to friends, family or colleagues. The routing component, also referred as topology
component, establishes at (considerably) lower than wire speeds the intra-domain or inter-
domain paths that will be needed for publication delivery, while the forwarding component
employs these paths to deliver published data at wire speeds. The caching component stores
copies of publications either in the local system or in any system on the communication graph
formed by the network so as to speed up their delivery to future subscribers. The network
attachment component is responsible for discovering points of attachment to the network and
configuring an attaching node to make communication possible.

The nodes implementing the PSIRP component wheel co-operate to support the network
architecture as outlined in Figure 3. In this architecture publishers and subscribers exchange
data packets associated with metadata; metadata may include scoping information and other
information useful for either receivers or intermediate network elements. Each piece of data is
originally associated with one or more application identifiers and one or more scopes.
Application identifiers are only used by applications for their own purposes and are
transparent to the PSIRP network. Publication scopes are defined either via metadata
attached to the data or via explicit scope identifiers; they determine the elements of the
rendezvous system that should act on the data they accompany. The applications resolve the
application identifiers to rendezvous identifiers that are supplied to the network along with the
scope information. The network in turn maps these to sets of forwarding identifiers that are
used to eventually deliver published data to subscribers; these forwarding identifiers
essentially denote the per publication or shared multicast trees that a packet should follow
through the network.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 7(37)

Figure 3 - The PSIRP network architecture

Finally, the PSIRP service model determines the interface between the network and
publishers (for announcing and sending data), subscribers (for expressing interest to and
receiving data) and network services (for management purposes). From the publisher (or
sender) viewpoint, publications are associated with a rendezvous identifier and, optionally,
some metadata. Features supported by the publisher service model may include on-demand
publisher anonymity, transparent multicast distribution, indication that multiple publications are
correlated, support for data caching directives, publications anycasted to a set of subscribers,
limited publication scoping and publisher accountability (or authentication) by the system.
From the subscriber (or receiver) viewpoint, publications are requested via rendezvous
identifiers, also possibly associated with metadata. Features supported by the subscriber
service model may include implicitly or explicitly limited subscription lifetimes, assurance of
publisher authentication, protection of data integrity and subscriber accountability (or
authentication). From the network service (management) viewpoint, management and
measurement tools must be supported. Features supported by the network service model may
include the provision of directory services and support for policies.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 8(37)

3.1 Applications
As outlined in D3.1 [4], PSIRP does not focus on the implementation of dedicated applications
for PSIRP. The following section outlines the plan for enabling a set of applications through
external partners and also the implementation of a small set of applications for demonstration
purposes.

3.1.1 Current applications and application innovation process
D3.1 outlined the so-called application innovation process as the main driver for application
development in PSIRP. Within that process, we engage with external partners with an interest
in the wider publish/subscribe space to enable development or porting of applications to our
platform. First contacts have been made in this regard although a complete list of applications
has not yet been selected. However, efforts in the areas of Delay Tolerant Networks (DTN),
sensor applications and event processing are expected to emerge through our collaborations.

3.1.2 Firefox Plugin
Web Browsing is a classic example of a publish/subscribe based data exchange: a web site is
a, possibly evolving, complex publication consisting of web pages and their embedded
objects, to which clients subscribe whenever they wish to read them. In the current Internet
architecture, a client needs to periodically poll the web server to see if there are any changes
to its content, since the rendezvous between the client/subscriber and server/publisher is
instantaneous. The emergence of schemes like RSS that inform a client of changes to a
server indicates that many Web sites would benefit from a more permanent association with
their clients, such as the one provided by a publish/subscribe network.

In order to demonstrate possible user-lever applications of PSIRP, we are developing a
PSIRP protocol handler extension for the Firefox web browser. The extension adds support for
a "psirp:" URL scheme into the browser, allowing for complete web sites to be treated as
PSIRP publications. The PSIRP URL scheme is of the following format: "psirp://[psirp_id]".

Once the protocol extension is installed into the browser, PSIRP URLs can be used in the
same manner as "http:" URLs; they can, for example, be typed into the address bar of the
browser and they can be given as the "src" attribute for image tags. When the extension
encounters a "psirp://[psirp_id]" URL, it subscribes to the publication with "[psirp_id]" from the
underlying publish/subscribe network and delivers the resulting data to the Firefox web
browser. The data can be, for example, regular web pages or media files.

3.1.3 Multicast Bit Torrent
From its inception the PSIRP project has strongly argued that the Internet has evolved from a
means of connecting endpoints to a means of connecting information with its users. Therefore,
implementing a massive content distribution application to test the abilities and limitations of
our design and implementation makes sense. We have thus decided to develop Multicast
BitTorrent, a content distribution application that combines the best ideas of BitTorrent with the
capabilities provided by a publish/subscribe network, such as native support for rendezvous
and multicast delivery. In addition to providing the project with a very popular demonstration
application, Multicast BitTorrent will help guide the design and implementation work, as it will
provide us with an application that has a direct counterpart on the existing Internet.

In order to understand the opportunities offered by PSIRP for content distribution, we have
analyzed the design and implementation of BitTorrent, with the aim of determining which
features should be reused in PSIRP and which should be replaced. The core concept of
BitTorrent is that the content to be distributed is split in individually verifiable pieces that can
be independently exchanged between the participating users, or peers; as a result, each peer
that has downloaded some pieces may then exchange them with other peers, thus spreading
the network load around the network, instead of concentrating it close to its original distributor.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 9(37)

In addition, peers can come and go, something very important in large data exchanges, as
each data piece can be separately exchanged and verified. The exchange proceeds on a tit
for tat basis between the peers, therefore each peer has an incentive to behave well: if it
wants to download new pieces, it needs to upload pieces to other peers. On the other hand,
BitTorrent suffers from a costly (in terms of bandwidth and time) peer selection process, since
good peers can only be distinguished after communication with them for some time.

At first glance, it may seem that BitTorrent is basically a crude substitute for multicast in the
sense that it allows a content provider to reach large numbers of users without simultaneously
unicasting the content to each one, an approach limited by the bandwidth available close to
the content provider. However, the idea of breaking the data exchange into a set of piece
exchanges has multiple uses: in addition to allowing each peer to start uploading pieces as
long as it has downloading them, thus feeding the system, it also turns each peer into a cache
for the pieces that it has exchanged, thus allowing the data exchange to become very robust
even if it is spread over wide time intervals.

We have decided to retain the concept of exchanging data pieces in Multicast BitTorrent, also
taking advantage of the PSIRP ability to provide a rendezvous facility between senders and
receivers, as well as the PSIRP support for multicast delivery. In Multicast BitTorrent each
piece becomes a separate publication, so that peers that do not have this piece may
subscribe to it and peers that already have the piece may publish it. It is an item for study to
determine whether the application (peers) or the publish/subscribe network should handle
issues such as preventing publisher conflicts, i.e. not allowing multiple publishers to send the
same piece at the same time, and delaying publishers from serving subscription requests until
sufficient subscribers exist, to allow resource savings.

Another area where Multicast BitTorrent differs from standard BitTorrent is in incentives: unlike
in a unicast setting where tit for tat is used to ensure data flow between peers, with multicast
the publisher is decoupled from the subscribers: there is no direct piece exchange between
the endpoints. Among the incentive mechanisms that we expect to test are the use of the
rendezvous points as issuers and validators of receipts for data exchanged, exploiting the
routing scheme to check at intermediate nodes whether peers are behaving well, and directly
exchanging decryption keys between individual pairs of endpoints, i.e. using tit for tat between
the publisher and each subscriber in the key rather than in the data exchange.

3.1.4 Socket’s API Emulator
While some major application areas, such as Web Browsing and file distribution, will be
explored within the project, the scale and duration of the PSIRP project mean that there will be
no resources and time to investigate other types of applications. In practice, even if the
publish/subscribe model becomes prevalent in the future, it is unrealistic to expect that all
network applications that people may want to execute will be rewritten in a publish/subscribe
style. The network architecture and implementation developed by the project will therefore
need to provide some type of backward compatibility for existing client/server applications, so
as to offer a low cost migration path to publish/subscribe networking.

In D3.1 [4] we have indicated that a Socket’s API Emulator will be developed that will allow
legacy applications to operate on top of the PSIRP upper layer(s), by replacing the
client/server implementation of the sockets library with a publish/subscribe one. The emulator
will need to support both stream and datagram sockets, that is, it will need to replicate the
functionality offered by TCP and UDP to applications. In contrast to the Web Browsing
application plugin, the Sockets API Emulator will not be able to take advantage of application
semantics, treating each connection or datagram as a separate entity. As a result, application
performance over the Sockets API Emulator is expected to be much worse than that offered
by an application specific plugin, let alone a rewritten application.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 10(37)

Datagram sockets exchange individual datagrams, which can be modelled by individual
publications if we view a publication as a single piece of data. Stream sockets on the other
hand exchange sequences of datagrams that need to be reassembled exactly as transmitted;
therefore they can be modelled by channel like publications. The design of the Multicast
BitTorrent application will be exploited for the design of the datagram socket part of the
Sockets API emulator, since multicast data transmission is a generalized case of datagram
based communication, while the design of the Web Browsing plugin will serve as the basis of
the stream socket part of the Sockets API Emulator, since interactions with a Web Server are
at their most elementary level a set of connections over stream sockets.

3.2 Rendezvous
Perhaps the most important function in the PSIRP architecture is that of the rendezvous
system. Its role is to match the interests of subscribers and publishers as well as to construct
the initial data forwarding path between them in cooperation with the topology function.

Host Local
Rendezvous Subsystem

Inter-Domain
Rendezvous
Subsystems

Scope Y Rendezvous
Subsystem

Scope Z Rendezvous
Subsystem

Scope X Rendezvous
Subsystem

Intra-Domain
Rendezvous
Subsystems

Global
Rendezvous
Framework

Figure 4 - The logical rendezvous architecture

In Figure 4 the logical rendezvous architecture is illustrated within a complete system
consisting of three subsystems.

3.2.1 Global Rendezvous Framework
The global rendezvous framework’s main task is to provide the means to globally publish and
subscribe to the scope information n of the scope rendezvous subsystems. In a global network

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 11(37)

this is not likely to be a single system; instead there will be several global rendezvous
subsystems and each of them may contain different intra-domain and inter-domain
rendezvous subsystems.

3.2.2 Scope Rendezvous Subsystem
The scope rendezvous subsystem is responsible for rendezvous within the specific scope it
represents.

3.2.3 Host Local Rendezvous Subsystem
The host local rendezvous subsystem is responsible for node local rendezvous as well as for
connecting the host rendezvous subsystem to other rendezvous subsystems and to the global
rendezvous framework.

3.2.4 Rendezvous Identifier
In PSIRP architecture all data (fragments) are publications and are identified by a Rendezvous
Identifier (RId). Each publication is published under one or more scopes, which are identified
by Scope Identifiers (SId). (SId, RId) pairs constitute a flat identifier namespace. Semantically
scope identifiers are a subclass of rendezvous identifiers typically being generated through
some cryptographic mechanism like hash functions.

3.2.5 Global Rendezvous Scope and Framework
Scope Identifiers that are administrated by any of the subsystems in the global rendezvous
framework are called global rendezvous scopes. All publications published under any global
rendezvous scope are related to other scopes, i.e. a RId under any global rendezvous scope
is pointing to metadata containing more scope related data. Thus, no standalone data items
can be published under a global rendezvous scope. Scope rendezvous subsystems use this
system to utilize global visibility for their scopes by publishing them under one or more global
rendezvous scopes and end nodes use this system to acquire knowledge of scopes by
subscribing to the publications available under the global rendezvous scopes.

3.3 Topology
Since the first complete architectural design of the topology and tree management function in
PSIRP networks will only be ready at a later time (specifically for D2.3) our present design and
implementation plans are focused on building up a basic framework that can serve as a basis
for implementing different alternatives in the final design. At first the focus shall be on the level
of intra-domain topology management, and this will be extended later on to the inter-domain
case as the relevant parts of the architecture become more concrete.

The key elements in this framework are mechanisms for discovering the local topology
information, exchanging that information with the necessary network components, carrying out
the required computations, and then communicating any required changes in the forwarding
configuration to the involved nodes. The discovery of local topology information will be
primarily performed by using the techniques the network attachment mechanisms are based
on. Local publish/subscribe messaging can be used to create the equivalent of router
advertisements of today’s networks. We plan to specify tentative formats for both the
advertisement publications as well as for the messages which nodes can publish to announce
their local topology information.

The network entities responsible for topology management would then subscribe to this
topology information and carry out tasks related to tree construction and management. Any
configuration changes related to forwarding, such as generation, modification, aggregation or
destruction of forwarding trees will again be communicated to the forwarding nodes by means
of publications with well-known or configurable RIds.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 12(37)

We plan to implement the software components to carry out the above tasks in a modular
fashion, knowing that their final architectural location has not yet been defined. For example, it
is not yet firmly decided whether topology management is kept as a separate entity from the
Rendezvous system, with which it would interface via well-defined control messages, or
whether a tighter integration is called for. The flexibility aimed at the early topology-related
implementation activities is meant to cater for both possibilities, requiring minimal effort later
on to apply the developed code in different architectural contexts while allowing for rapid
prototyping of algorithms and designs.

3.4 Forwarding
Forwarding is used to actually deliver data from one location to another. In the first prototype it
will be based on label switching, i.e. each packet will have a label (or a stack of labels) and
each node will have a forwarding table as shown in Table 1.

A label is a bit string in the packet that is used by the nodes to make forwarding decisions. A
label is a combination of Forwarding IDs, Scope IDs and Rendezvous IDs. Although the
forwarding module should be only concerned about the Forwarding IDs, the first prototype will
also examine the Scope ID and Rendezvous ID of each message, to determine whether there
is a local subscription or a forwarding rule for those. Later, when forwarding is performed in
kernel or in hardware, this may need to be optimized, but it is currently an open architectural
issue.

A port is a local (internal to the node) numbering of the different next hops that the packet can
be forwarded to, including the wired and wireless network interfaces towards the next hop
forwarding nodes, as well as other software modules (such as applications or helper
applications) internal to the node in question. Forwarding should be very simple so that it does
not take too much time per packet.

Labels can be stacked as shown in Table 1. The first row shows that packets labeled X will be
forwarded on port 1 and a label A is prefixed to the original label. The second row shows the
branching of a multicast tree Y. The last row shows a packet from which the label Z is popped
from the stack and the packet forwarded to port 3. The wildcard “*” denotes any label. Port 3
can even be a loopback interface, i.e. returning the packet to be processed by the forwarding
table after Z has been popped from the label stack.

Incoming
label

Outgoing port(s) Outgoing label(s).

X 1 AX
Y 1

2
Y
Y

Z* 3 *

Table 1 - Forwarding table

The forwarding table is a central element of node operation. Configuring its contents is the
task of helper applications, such as the Rendezvous Point and the Topology Manager. The
forwarding tables of the nodes in a network implicitly define and store the delivery trees and
active subscriptions.

3.5 Packet Level Authentication (PLA)
Packet Level Authentication (PLA) [15],[19] is a novel way to enhance network security on the
network layer by providing availability and protecting the network infrastructure from several

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 13(37)

kinds of attacks, like Denial-of-Service (DoS) attacks. While the architecture work has not yet
fully defined the authentication schemes, we use PLA as an example method to authenticate
traffic. PLA is based on the assumption that per packet cryptographic operations are possible
at wire speed in high speed networks with new cryptographic algorithms and advances in
semiconductor technology.

The main principle of PLA is to detect and stop malicious traffic as quickly as possible while
benevolent traffic should be allowed go through the network. The major difference between
traditional network layer security solutions and PLA is that PLA gives nodes in the network the
ability to detect attacks immediately by checking the authenticity and integrity of every packet,
while with traditional end-to-end security solutions, like IPSec, only the end point of the
connection can verify the authenticity of the packet. PLA allows every node to verify the
packet independently without having to trust nodes that have previously handled the packet. It
is important to note that PLA aims to complement existing security solutions instead of
completely replacing them.

A good analogy to the principle of PLA is paper currency. Anyone can independently verify
whether a bill is authentic simply by checking security measures inside the bill like watermark
and hologram. There is no need to contact the bank which has issued the bill. Using the same
principle PLA gives every node the ability to check whether the packet has been modified,
duplicated or delayed without having any kind of contact with the sender of the packet.

PLA is based on cryptographic signature techniques and it adds a separate PLA header into a
packet which contains all necessary information for verifying the packet's authenticity and
integrity. Although PLA has been developed for IP networks, it does not depend on the
network layer protocol used and therefore it can also work without the IP protocol.

3.5.1 Cryptographic solutions and hardware acceleration
To reduce the bandwidth overhead, PLA uses elliptic curve cryptography (ECC) [18],[20],
since ECC keys and signatures are very compact. A 163-bit key used with PLA has the same
cryptographic strength as 1024-bit RSA key.

Since public key cryptography is very computationally intensive, dedicated hardware for
cryptographic operations is necessary for good performance. A proof-of-concept FPGA based
hardware accelerator has been developed for PLA [17],[16]. The accelerator supports ECC
signature verifications and can also be extended to support signature generations. Altera
offers a Hardcopy technology [13] which allows an existing FPGA design to be converted into
Application Specific Integrated Circuits (ASICs). According to simulation results, a 90 nm
Hardcopy ASIC would achieve 850,000 verifications per second. Optimizing the design and
converting it to a more modern manufacturing process would yield much higher performance.
These results show that PLA is scalable for high speed core networks as long as a dedicated
hardware is used for cryptographic operations.

3.5.2 PLA Protocol
Figure 5 below describes the structure of the PLA header and shows an example of how the
PLA header can be combined with PSIRP-related information. The PLA header is marked as
bold box in Figure 5. The fields of the PLA header are explained below.

The trusted third party certificate corroborates the binding between the sender's identity and
its public key. It also guarantees that the sender is a valid entity within the network and is
authorized by some trusted third party. To reduce computational and bandwidth overhead,
PLA utilizes identity-based implicitly-certified cryptographic keys [14]. Therefore, the sender's
public key can be calculated from the trusted third party certificate. This sender's public key,
together with a signature, protects the integrity of a packet and guarantees that any
modifications of the packet will be detected, while it also guarantees that the sender cannot
deny sending the packet.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 14(37)

Figure 5 - The structure of the PLA header

The timestamp field makes possible the detection of delayed packets. Such packets can be a
sign of a replay attack. The sequence number field contains a monotonically increasing
number. It is used to detect duplicated packets. Finally, there is a cryptographic signature over
the whole packet ignoring Ethernet header and forwarding identifier fields which can change
during the lifetime of the packet. The total length of PLA header is roughly 1000 bits

It is important to note that this header design is preliminary and it will probably change based
on our experiences with it; some header fields from the PLA header may not be necessary for
PSIRP while other fields may need to be added. It is also optional for nodes to decide how
strict PLA related checks will be performed. They may opt to check only some of the PLA
header's fields or ignore PLA header information altogether.

3.6 Network Attachment
Network attachment is the component responsible for discovering attachment points and
configuring components in such a way that communication becomes possible. An attachment
process may include the following operations:

1. Attachment point discovery and network selection

2. Communication establishment with the attachment point

3. Authentication of entities, and/or authorization to use the network

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 15(37)

4. Exchange of configuration information and setting up components for communication

3.6.1 Operations
From the perspective of a joining node, the first step in attachment is usually to find another
node which can be used for accessing a network. Information available in this phase may
include the attachment point's (or network's) identity and capabilities, as well as some basic
configuration parameters. The second step is to initiate communication with a selected node,
first using basic forwarding and link layer mechanisms. In our model, the result of this
operation is a "control channel", where communication between network attachment daemons
in two nodes can occur using publish/subscribe functions. For example, this implies that each
participant has to know what identifiers its counterpart has subscribed to. If needed, this
channel may be integrity protected, and also confidential. Thirdly, entities might need to be
authenticated in a secure, but possibly opportunistic manner. In relation to this, nodes can be
authorized to use certain services or perform certain operations in the network. Authorization
can be based on authentication, but also on a contract defining services and compensation for
them. The fourth issue we have identified is, of course, exchange of configuration information.
This data is used for setting up other components, such as rendezvous, at both participants in
order to enable communication. In addition, security associations can be set up during an
attachment procedure. Notably, some of these operations can, at least partly, be run in
parallel, within the same messages, that is, publications.

3.6.2 Participants
In addition to the two main participants that become attached to each other, network
attachment can involve other entities, such as authentication and rendezvous systems.
Furthermore, attachment can be performed between a single node and an existing network
(asymmetric scenario), but also between nodes that both are connected to networks
(symmetric scenario).

3.6.3 Relation to other functions
Network attachment is used for bootstrapping rendezvous in a node that joins a network. It
involves setting up required forwarding state between the node local rendezvous system and
the network’s rendezvous subsystem. In addition, we note that attachment usually implies a
change in network topology. This is also closely related to the problem of mobility.

3.7 Interfaces
The current conceptual architecture defines only one generic interface, which is called
pubsub-api. All communication between the applications and the networking functions is
enabled through this API. The API will define required functions to support needed operations
in the PSIRP system. In the purest form the only needed primitives are publish and subscribe.
However, due to the requirements of the helper applications (e.g. Rendezvous), there may be
a need for extended functionality besides the pubsub-api. This extended functionality for
helper applications is provided by the Advanced API in the current implementation plan and
described in more detail in section 4.4.3. The Advanced API includes functions that are not
part of the publish-subscribe architecture, but are needed to implement the node architecture.
An example function is the configuration of the forwarding table that is needed by both the
Rendezvous Point and the Network Attachment.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 16(37)

4 Work Plan

4.1 Implementation Overview
This chapter outlines the implementation for each functional entity that will be included in the
first iteration round prototype. It is important to keep in mind that the level of detail is kept
reasonable to avoid overwhelming the reader while still providing sufficient detail to
understand the current implementation of the conceptual architecture as described in D2.2 [1].
As outlined in the introduction, it is likely, and even desirable, that details of our
implementation will change due to the continuous learning process and the interaction with the
architecture team. Examples of such open topics are the packet header and payload formats.

4.1.1 Architecture
This section describes the architecture of a network node in the prototype network (see Figure
6). All nodes have a similar architecture, although they may not implement all the functions
shown in the figure. For example, a forwarding node may implement more or less functionality
than a dedicated end-host.

Ke
rn

el
Li

br
ar

ie
s

Ap
pl

ic
at

io
ns

syscalls

PSIRP I/O

if1

libpsirp

psirpdUser application Network
Attachment

daemon

Virtual memory

PP

Rendezvous
Point

libpcap/
libnet

VFS

FF

libfuse

FUSE kmod raw sockets

if2

PP PP

libpla
API Adv. API

Figure 6 - The Overall Node Architecture

If we assume that the user level publications can practically be of any size, from one byte to
several terabytes, and that users can read and write to them in random positions, the
traditional socket API does not seem to be the most efficient solution any more. From the
application developer point of view, instead of thinking about sockets and end-points, it is
easier to just read and write to a memory location. As all general purpose operating systems
of today provide virtual memory, which has become abundant with 64-bit address spaces,
even the largest publications can be mapped to the process address space. To keep the
implementation efficient, unnecessary copying between memory areas should be avoided.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 17(37)

To implement local representation of publications as virtual memory areas, some parts of the
implementation need to be in kernel space. It is possible to implement the needed extensions
in a kernel module which can be loaded and unloaded without the need to recompile other
kernel parts. The kernel module needs to implement a new system call. This system call can
be used to create publications, publish them and subscribe to publications. The kernel module
handles the allocation of memory used for publications. As publications are just regular virtual
memory areas, normal FreeBSD virtual memory management systems will handle them as
any other application memory in the system, e.g. swap them out if the system is running low
on memory.

While this core functionality of memory allocation is performed in a kernel module, it is better
to place non-performance-critical components in user space. This allows easier development
of prototype software both in terms of easier debugging but also for dividing work between
developers. In the beginning, most of the prototype code will be in user space. We can put, for
instance network I/O and PLA in a daemon process, which is linked to publications via the
pager interface in the kernel, as it seems to be possible to take advantage of the file system in
user space (FUSE) software [5]. With FUSE it is possible to create a file system in user space
as backing storage for publications in virtual memory: when allocating memory for a
publication, the pager for the memory area can be set to be a vnode pager, and the backing
file to be in FUSE. In this manner we can trap fetching of missing memory pages (=
subscribing) and paging out memory pages (= publishing).

Rendezvous, topology etc. could be implemented as user space daemons just like the
network I/O daemon and the network attachment daemon, if we assume that they can be
implemented via the same system call interface. Compared to user applications however,
some of these daemons may need extended abilities to, for example, configure the forwarding
tables in the network I/O daemon.

4.1.2 Network Nodes
The prototype network is a small scale network operating inside a single administrative
domain. Compared to a solution that covers multiple domains, some functions are simpler, for
example the rendezvous and topology management. The assumptions made during the first
iteration round are therefore simpler, since there is no need for developing solutions for
communication and information exchange between different domains that potentially have
different preferences, for example, with respect to the choice of rendezvous system.

The nodes that are needed in the network are a set of forwarding nodes, providing both some
rendezvous functionality as well as forwarding functions, a rendezvous point, providing the
"root point" of the rendezvous mechanism, and end-hosts that are publishing and subscribing
data. Note that the Rendezvous function in this case is limited to a simple root node: this is
possible when the prototype is only a single domain implementation. To cover multiple
domains, the Rendezvous mechanism will be developed further and the second iteration
round will provide a prototype of that inter-domain system.

4.1.3 Signaling Model
Figure 7 represents our current understanding of the prototype signaling model, i.e. how
internal and external signals flow between the functions and network nodes in the prototype
during the supported operations. Because signal headers and payload formats are still open,
they are not drawn in detail. Below the figure each signaling step is described in more detail.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 18(37)

F&TRVS

2. Subscribe[sid, *]

1. Subscribe[(rvs sid, *)]

F&TRVS RVSF&T

3a. Forward[fid_bcast, payload] 3b. Forward[fid_bcast, payload]

1. Subscribe[(rvs sid,*)]

5a. Publish[(rvs SId, rid), “sid isDefault”] 5b. Publish[(rvs SId, rid). “sid IsSefault”]

APP APP

Network Attachment [Authentication, “network services” scopes & keys]

6. Publish[(sid,rid), (meta)data]

7. Publish[(sid,rid), metadata]

9. Publish[(sid,rid), metadata]

8. Forward[def_fid,payload]

11. Subscribe[(sid,rid), ...]
12. Subscribe[(sid,rid), ...]

13. Forward[def_fid,payload]

14. Subscribe[(sid,rid), ...]

16. Subscribe[(sid,rid), pub-sub path]

17. Forward[fid_pub, payload]

18. Subscribe[(sid,rid), pub sub path]

20. Data[(sid,rid), data]

21. Forward[pub_sub_fid, payload]
22. Forward[pub_sub_fid, payload]

23. Data[(sid,rid), data]

PublisherRendezvous PointSubscriber

Node’s Internal
signal
External signal

APP RVS F&TApplication Rendezvous
function

Forwarding & Topology
function

Local Bootstrap

RVS bootstrap

Publish

Subscribe

Data forwarding

4b. Subscribe[sid,*]4a. Subscribe[sid,*]

1. Subscribe[(rvs sid, *)]

10. Publish[(rvs SId, rid), “pub path”]

15. Publish[(rvs SId, rid), “sub path”]

19. Publish[(“rvs info”, rid) pub sub path]

Store publication and
advertise it to RP

def_fid known def_fid known

pub_fid known

sub_fid known

publication match

rendezvous & path generation

Pub_sub_fid known

Figure 7 - The Signaling Model

4.1.3.1 Local Node Bootstrap
1. The topology function in each node subscribes to all local host rendezvous information.

Rendezvous information carries forwarding table updates, which are published by the
(local) rendezvous function.

4.1.3.2 Network Attachment
In the Network attachment phase, end nodes are authenticated and attached to the network.
During this signaling all domain specific network service scopes, such as domain rendezvous
scope and domain topology scope, are provided to the nodes.

4.1.3.3 Rendezvous Bootstrap
2. The rendezvous function of the Rendezvous Point (RP) subscribes to the domain’s default

rendezvous scope. This signal is advertised by the forwarding function to all nodes
belonging to a domain.

3. The subscribe signal sent from the RP's forwarding function will first enter
Publisher/Subscriber nodes via their forwarding function (fast path).

4. The Publisher/Subscriber node forwarding function drops the signal to the slow path and
then provides it to the node’s rendezvous function.

5. The subscribe signal triggers generation of rendezvous information in the
publisher/subscriber rendezvous function. The publisher/subscriber topology function is
subscribed to it and will receive it. The content of the update is “default rendezvous path”.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 19(37)

4.1.3.4 Publish
6. One the publisher's applications uses the pubsub-api to publish data. Eventually the

publish call will enter the publisher’s rendezvous function, where the publication is stored
and an advertisement for the publication in form of a new publish signal is triggered.

7. The publisher’s rendezvous function uses the Advanced API to trigger a publish signal that
advertises the publication to the RP. This signal is passed to the publisher’s forwarding
function

8. The publisher’s forwarding function receives the signal, chooses the right forwarding
identifier (FId) and then forwards the signal towards the RP using the domain’s default
rendezvous path.

9. The forwarding function of the RP receives the signal, lifts it to the slow path and provides
it to the local rendezvous function, where the publication is added to the rendezvous
databases accordingly.

10. The rendezvous function publishes a rendezvous update that contains a path to the
publisher. The topology function has subscribed to it, so it will receive it locally and
generate/update the corresponding forwarding table entry.

4.1.3.5 Subscribe
11. Some subscriber's application wishes to subscribe to the publication that was published in

steps 6-10. Subscribing happens using the pubsub-api with appropriate parameters, at
least SId and RId. Eventually, the subscribe call reaches the rendezvous function, which
then generates and triggers a subscribe signal, which passes by the local forwarding
function in the same manner as in the publish phase.

12. The subscriber’s forwarding function receives the signal, chooses the right FId and
forwards the signal towards the RP using again the domain’s default rendezvous path.

13. The RP's forwarding function receives the subscribe signal, lifts it to the slow path and
provides it to the local rendezvous function.

14. The local rendezvous function receives the subscribe signal and checks whether it has
related publication in the databases - In this case it has.

15. The rendezvous function publishes a rendezvous update that contains the path to the
subscriber. The topology function has subscribed to it, so it will receive it locally and
generate the corresponding forwarding table entry. This entry may be needed e.g. in case
the subscriber wants notification about the successful subscribe before the actual data. In
this message sequence chart such a notification is not used.

16. The rendezvous function must notify the publisher about an existing subscription to enable
the data transfer. The rendezvous function generates a forwarding path between publisher
and subscriber and adds this information as metadata to the received subscribe signal and
triggers signaling towards the publisher using the pubsub-api.

17. The RP's forwarding function will send the subscribe signal using the publisher’s Fid.

18. The publisher's forwarding function receives the subscribe signal, lifts it to the slow path
and provides it to the rendezvous function. It is matched with the cached data and data
transfer is initiated.

19. The received subscribe signal triggers generation of rendezvous information in the
rendezvous function. The publisher's topology function has subscribed to it so it will
receive it locally. The content of the update is path information from the publisher to the
subscriber.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 20(37)

4.1.3.6 Data Transfer
20. It is assumed that the rendezvous function would map the data and trigger data sending,

but it may also be some other entity.

21. The publisher's forwarding function forwards data packets towards the subscriber using
the related FId.

22. The RP's forwarding function forwards data packet towards the subscriber – this all
happens on the fast path.

23. The subscriber's forwarding function receives the data packet and maps the data to the
application memory page, who then can read the data.

4.2 Helper Functions
The PSIRP prototype is a combination of system level functions that are located both in the
kernel and in the user space, as well as a set of user space helper functions that use system
level functions to implement the desired set of prototype functions. In this section, the
implementation plans for the helper function are described.

4.2.1 Rendezvous
In Figure 8 the architecture of the rendezvous function is presented.

RP Daemon RP Databases

- Scopes (Global, Content)
- Publications (All)
- Subscriptions (All)
- Forwarding Information

Ruby-MySQL

Rendezvous Point

End Node

Rendezvous signaling:
- Subscribe
- Publish

RVS Client
Application

PSIRP I/O + Fuse

Topo/FWD

PSIRP I/O + Fuse
PubSubAPI PubSubAPI

PubSub Daemon

RVS Client Topo/FWD

PubSub Daemon

Figure 8 - The rendezvous prototype architecture

As defined in the conceptual architecture, the rendezvous function is distributed and every
node in the architecture takes part in it one way or the other. In the first PSIRP rendezvous
prototype, the target is to implement essential parts of the intra-domain rendezvous function
and to integrate it to other existing prototype function modules. In practice, the rendezvous
function tightly co-operates with the topology and forwarding function, both of which are
implemented in a user space demon process.

The rendezvous implementation will consist of two functional entities:

• The Rendezvous Client (RVS Client), also referred to as minimal rendezvous function,
implements the rendezvous functionality needed in the nodes that wish to subscribe
and/or publish, even only locally (intra-node). In the PSIRP architecture this means
that in practice every node in the topology must implement this functional entity.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 21(37)

• The Rendezvous Point (RP) implements part of the rendezvous needed to support
distributed operations beyond one node. The RP is the location where inter-node
publish and subscribe signals will meet. In other words, a domain RP is the entity
which is aware of all subscriptions and publications within a domain. Further a
rendezvous point adopts one of the three different functional modes:

o Interior Rendezvous Point (IRP) supporting only intra-domain rendezvous

o Exterior Rendezvous Point (ERP) supporting only inter-domain rendezvous

o Rendezvous Point (RP) supporting both intra- and inter-domain rendezvous

In the first prototype inter-domain rendezvous is out of scope and therefore IRP and RP are
used as synonyms.

It is likely that the conceptual architecture will also require a rendezvous entity in the
forwarding nodes, but the forwarding node rendezvous function will not be implemented in the
first stage of prototyping.

The current conceptual architecture has several options of how intra-domain forwarding could
be implemented. This is naturally important for rendezvous, because the forwarding function
will be used to forward the rendezvous signaling. The lack of decision on how the forwarding
in the intra-domain level will ultimately be done, given the possibility that there are currently
several currently equally good options, is one of the reasons the forwarding node rendezvous
entity is left out. Said decision mainly affects the implementation of the forwarding node
rendezvous function.

4.2.1.1 Rendezvous Functional Entities
Here we assume that no distinction will be made in the RC or RP functions in the handling of
metadata and data. In other words, data stored in the trusted node's database is assumed to
be valid at all times and the question whether it is data or metadata describing some data is
out of scope for rendezvous. Therefore the primitive handling will be identical in all cases. In
the RVS Client this means:

• If subscribe results match an entry in the local node cache (pubsub daemon), no
further checks for the data type etc. will be made, but the data will be mapped to the
requesting process and further rendezvous signaling is not needed.

• If subscribe does not result in a local match, rendezvous signaling will be triggered
towards the RP.

Rendezvous Client
The rendezvous client is assumed to implement at least the following functionalities:

• Initiating subscribe signaling towards RP.

• Initiating publish signaling towards RP.

• Listening to the rendezvous advertisement(s) from the network and bootstrapping of
the rendezvous function in the local node, if needed. These advertisements are coming
from RPs or from the on-link forwarding node as defined by the current conceptual
architecture.

• Maintain active publish and subscribe states.

The current understanding is that the rendezvous client will be implemented as part of the
pubsub daemon using C. Alternatively the client can be implemented using Ruby as with the
RP rendezvous.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 22(37)

Rendezvous Point
The Rendezvous Point enables at least the following functions:

• Periodical rendezvous advertisement (subscribe messages carrying RP SId(s))
needed to enable intra-domain rendezvous bootstrap and advertising which scopes
can be reached through a specific RP. Advertisement is done using the pubsub-api.

• Maintain scopes database based on the configuration of the RP and in later phases
(inter-domain) based on received inter-domain rendezvous advertisements.

• Maintain subscription database for the received subscriptions

o Pre-establishing subscriptions should be supported.

• Maintain publication database for the received publications.

• Share database information with other domain RPs to prevent a single point of failure

o Not in the first prototype.

• Forwarding notification signal (subscribe) to the publisher, if a valid entry exists in the
publication database.

• Provide forwarding information updates to the topology function based on contents in
the databases and received rendezvous signals.

o Routing of actual data is based on the forwarding table.

The RP rendezvous function will be implemented as a separate module using Ruby (and C
extensions) in the same way as the network attachment application is implemented in Python.
The module is planned to use PSIRP primitives from the pubsub-api to enable the intra-
domain Rendezvous Point function. Because the pubsub-api is implemented in C, one of the
implementation tasks is to implement an appropriate wrapper interface between the RP and
the API.

4.2.1.2 Rendezvous Function (intra-domain)
The intra-domain rendezvous function is responsible for enabling subscriptions and
publications to meet each other. However, before this can happen, the rendezvous system
and the forwarding path towards the Rendezvous Point must be bootstrapped within the
domain.

Rendezvous Bootstrap
The rendezvous bootstrap is initiated through the RP’s periodical rendezvous advertisements
which in practice are subscribe messages carrying one or more SId(s) that are accessible
through the RP. The scope ID(s) in the advertisement contains at least one SId that enables
the default forwarding path to the local domain RP. The RP floods this advertisement to all
interfaces. According to the conceptual architecture forwarding nodes will forward this
rendezvous advertisement onwards until all nodes within the domain have received it and thus
know through which interface a certain RP is reachable. Notice that there can be several RPs
within a domain and a RP may be reachable from several interfaces. However, in the first
prototype there is only one RP.

Subscribe
When an application wishes to receive some information, it uses the pubsub-api to subscribe
to the content. In practice subscribe is a system call provided by the pubsub-api and
pubsub_io kernel module. Valid subscribe system call contains at least a scope identifier and
a rendezvous identifier as its parameters.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 23(37)

The system call eventually reaches the RVS Client, where rendezvous signaling is triggered, if
needed. First, before initiating signaling, the client checks for a possible cache match for the
subscribed metadata/data:

• The subscribe signal is forwarded using a FId mapped to (SId, RId), if no data exists.
The default mapping is towards the domain RP.

• If data exists, it is mapped to the requesting process

Secondly, if no valid cache match was found, the client checks that the scope in the subscribe
signal, defined by the application, allows for signaling outside the local node. Actual
forwarding of the subscribe message is the responsibility of the local forwarding function. After
triggering the subscribe message the RVS Client prepares to receive a response from the RP:

• Subscribe Notification, when RP confirms that subscription was received, but the
rendezvous is still on-going.

o This is not implemented in the first prototype.

• Not found signal, when a publication identified by a (SId, RId) pair does not exist in the
known rendezvous system.

o This may be implemented in the first prototype.

Or from the publisher:

• Data, when sending the actual data identified by (SId, RId) pair.

Eventually the subscribe message sent by the end-node’s local forwarding function reaches
the RP rendezvous function. The rendezvous function in the RP implements at least the
following tasks for each received subscribe message:

• Valid subscription information is added to the subscription database, with an
appropriate lifetime. The lifetime is needed to handle the pre-established subscription
case, i.e. when a subscription happens before the actual publication exists. The
lifetime may be part of the subscribe message or it might be based on some RP policy.

• The subscription is checked against the publication database.

o If a publication entry exists in the database, a forwarding information update is
generated and the subscribe signal message is forwarded towards the
publisher.

• If a publication entry with data exists in the publication database, the data is forwarded
towards the subscriber and no further signaling is needed.

o In the first prototype data is always provided from the publisher to the
subscriber.

• If a publication entry does not exist in the publication database, the subscription may
remain in the subscription database until the publication arrives at the Rendezvous
Point or the lifetime entry expires.

o In the first prototype implementing pre-established subscriptions is low priority.

Publish
When an application wishes to publish some information it uses the publish system call
provided by the pubsub-api. The publish system call requires at least scope identifier,
rendezvous identifier and the data from the application. Of these parameters the data is
mandatory, whereas the identifiers can be generated later on in the pubsub daemon, if the
caller application didn’t provide.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 24(37)

As in the case of subscribe, the publish system call will reach the pubsub daemon and RVS
Client where rendezvous signaling is triggered, if requested publications did not exist in the
local cache. The RVS Client checks the semantics of the publish system call and generates a
corresponding publish signal. The actual sending of the publish signal is the responsibility of
the forwarding module. During the system call the publication is stored by the pubsub
daemon.

Eventually the publish message sent by the Publisher’s local forwarding function reaches the
RP rendezvous function. The rendezvous function in the RP implements at least the following
tasks for each received publish message:

• Valid publication information is added to the publication database, with appropriate
lifetime provided by the publisher.

• Publication information is checked against subscription database to find possible pre-
established subscriptions.

o If pre-established subscriptions do not exist, no further action is needed.

o If pre-established subscriptions do exist, the publisher will be notified about it
and data transmission from the publisher begins towards subscriber(s) via the
RP.

4.2.2 Topology
In the first iteration round, the topology management function is not yet implemented as a
separate entity. Because topology management is responsible for creating forwarding
information and updating the necessary forwarding table entities, some operations are needed
and our solution to handle this is to implement a minimal set of topology functions as tightly
integrated with other functions, such as the forwarding function.

4.2.3 Network Attachment
The first prototype, the network attachment (NA) daemon is implemented as a user space
application that uses publish and subscribe operations for communication. It implements a
network attachment protocol that provides a framework for:

• acquiring information about potential attachment points (APs)

• establishing a control channel between a node and its access point (i.e., two NA
daemons)

• negotiating about services and compensation

• exchanging configuration information, e.g. identifiers needed for setting up rendezvous

The protocol will also include support for opportunistic authentication and message integrity
protection.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 25(37)

An example message exchange between one NA daemon acting as an initiator (X) and
another one acting as a responder (Y) is shown in Figure 9. In that message sequence chart,
Y initially advertises itself by broadcasting publications on the link. At some point, X joins the
link and subscribes (internally) to these advertisements (A) received from its network interface.
From those messages X can learn an algorithmic identifier set (P) that Y has subscribed to,
and use it to publish a service/compensation contract proposal, a subscription to return
messages (I), and some other information (as needed), directed to Y. Then, Y subscribes to
messages coming specifically from X (R), and continues the contract negotiation and
configuration information exchange. Finally, Y authorizes X to use the network and publishes
the corresponding contract. After this, the channel between X and Y remains and can be
used, e.g., for updating configuration or compensation data.

Figure 9 – An example network attachment message sequence chart

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 26(37)

4.2.3.1 Implementation
The prototype NA daemon is implemented in Python. It uses the API provided by libpsirp.
Since that interface is written in C, a wrapper that makes the functions available in Python and
that converts C's data types into Python objects and vice versa, is generated with SWIG. In
addition, the daemon should be able to access the "low-level" forwarding mechanism in order
to set up the initial state for communication on a link. As long as the native publish/subscribe
I/O is lacking networking functionality, the attachment protocol implementation may be tested
between separate nodes by using an independent publish/subscribe engine and UDP sockets
for link emulation. This architecture is shown in Figure 10.

Figure 10 – The network attachment implementation: High level architecture

4.3 PSIRP Daemon and I/O
This section describes the implementation and operation of the PSIRP Daemon and the
PSIRP I/O module. The operation is described with use cases for the different functions, such
as publish and subscribe, and also implementation specific functions such as creating and
modifying a publication. Possibilities given by using the NetFPGA as an implementation and
evaluation tool are also described in this section.

4.3.1 PSIRP I/O module
The PSIRP I/O module is a loadable FreeBSD kernel module that implements the base for the
API, the Advanced API and acts as a gateway between user level applications and daemons
and the PSIRP Daemon. It implements new system calls on top of which the PSIRP Library,
libpsirp, can be built.

4.3.2 PSIRP Daemon
The PSIRP Daemon is a multi-thread user space daemon written in C. It will host a number of
functions:

• Forwarding

• Network I/O

• Local publication list

• Rendezvous Client

• Security functions, e.g. PLA

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 27(37)

As publications are presented to the node as memory areas, we need a way to send out
published memory areas and receive memory areas from nodes for publications that have
been subscribed to. A convenient way to implement this is to use the existing virtual memory
pager mechanism in FreeBSD. In FreeBSD there are different pagers to choose from, but
none of them is suitable for our purposes without heavy modifications. As we try to avoid
changing the existing kernel, we have chosen to use the vnode pager, which reads and writes
memory pages into files. By creating our own file system in user space, with the help of the
FUSE framework [5], we can handle the memory requests in the PSIRP Daemon and map
them to network I/O. The publication list stored in the daemon is then presented as a file
system through the VFS interface [6]. A separate thread in the daemon process is used to
handle file system requests.

In the other thread, we handle sending and capturing Ethernet frames. We have a forwarding
table and for each incoming PSIRP message we search for a match. If there is no match, the
frame is dropped. If there is a match the forwarding table gives a function pointer to the
handling function. The handling function may then either store the data from the frame into
memory (publication) or forward the message out on some other network interface (if the
policy says that the node is a forwarding node).

4.3.2.1 PLA
Packet Level Authentication (PLA) will be implemented and integrated with the PSIRP
daemon as a software module. The implementation will consist of adding a PLA header into
packets and validating them using software based cryptographic solutions.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 28(37)

4.3.3 PSIRP Daemon and PSIRP I/O Interaction
The following subsections define the publication operations. The operations cover the creation
and edition of a publication at the host, as well as publish and subscribe operations for
delivering the publication in the network.

4.3.3.1 Create
Figure 11 illustrates the set of procedures that are required at the node to create a publication.
Initially, an application calls the new ‘create’ system call to allocate memory for its data. The
data stored in this memory area will be published in the later phase after calling a separate
‘publish’ system call. The ‘create’ system call has a close analogy to the existing ‘malloc’
system call, i.e. they work in a similar way, from the application developer’s point of view. The
main difference is that the ‘create’ system call ends up in the PSIRP kernel I/O module that
creates a virtual memory (vm) object.

The virtual memory object is mapped to a set of free memory pages where the data will be
stored. In a way, the vm-object works as a handle for the full publication in the kernel, while
the memory pages can be seen as 4096 byte chunks of the full publication. We use the
standard FreeBSD based virtual memory management primitives to handle the memory
access between the application and memory pages. The PSIRP kernel module maps the vm-
object to the calling application’s virtual memory (vm) map and returns the memory address of
the beginning of the allocated memory area. The virtual memory map contains a mapping
between the address space that is visible at the user-space for the application and the actual
memory pages stored in the kernel-space. It is important to mention here that the created vm-
object will also be mapped to the PSIRP daemon’s vm-map after the ‘publish’ system call. The
PSIRP kernel module allocates an additional memory page for the metadata that is related to
the data stored to the rest of the memory pages. Typically, the application fills the data in the
memory area and calls the ‘publish’ system call.

syscalls

PSIRP Kernel I/O module

Application

Application’s
vm map
(0x56000-0x56fff)

1. addr = create(len) /* Here, addr = 0x56000 */

vm object
(handle to publication)

Page 0
(Metadata)

.

.

2. create a
vm object

”10101010...”

3. map object to
application’s
memory map

Page 1
(1010101...)

Page N
(...1010101)

4kB

len

Figure 11 - Creating a Publication

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 29(37)

4.3.3.2 Publish
Figure 12 illustrates the set of procedures that are required to publish data at the node. The
application gives at least the memory address and the length for the ‘publish’ system call. It is
important to note that the application is able to publish only part of the created data. Basically,
the memory address passed to ‘publish’ may point to any part of the memory earlier allocated
area via ‘create’ with the length informing the system how many bytes should be published
starting from that memory address. The application may also give the SId and RId in the
system call. However, if the values are not given, the PSIRP daemon generates the IDs for
the data to be published.

The ‘publish’ system call ends up at the PSIRP kernel module that maps the vm-object to the
PSIRP daemon’s vm-map. The first memory address stored in this created vm-map entry
works as a file name in the ‘open’ call in the kernel. The ‘open’ call ends up at the FUSE
daemon’s ‘open’ call-back function. It is important to notice that the ‘open’ call ends up at the
PSIRP daemon because the /pubsub directory in the FreeBSD virtual file-system is a mount
point for our own PSIRP file-system. The PSIRP daemon stores the memory address i.e. the
file name, to its local publication list. As a result, the daemon is able to access the memory
pages created by the application and publish the metadata to the RP. Once the ‘open’ call
returns, the PSIRP kernel module sets a copy-on-write flag on the memory pages.

syscalls

PSIRP Kernel I/O module

ApplicationApplication

Application’s
vm map
(0x56000-0x56fff)

Application’s
vm map
(0x56000-0x56fff)

1. publish(addr, len, ID)

vm object
(handle to publication)
vm object
(handle to publication)

Page 0
(Metadata)

.

.

”10101010...”

Page 1
(1010101...)

Page N
(...1010101)

2. map object to
FUSE daemon’s
memory map

FUSE daemon’s
vm map
(0xef000-0xeffff)

FUSE daemon’s
vm map
(0xef000-0xeffff)

FUSE daemon

If (ID=NULL)
Generate(&ID);

FUSE daemon

If (ID=NULL)
Generate(&ID);

3. kern_open(”/pubsub/0xef000”)

4. set copy-on-
write flags Addr, len, ID

Published data

(unpublished data)

(unpublished data)

5. update RP

Figure 12 - Publishing a Publication

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 30(37)

4.3.3.3 Edit
 Once the application writes to a memory area that was earlier published or subscribed there
will be a page fault. This is illustrated in Figure 13. In this case, page fault means that the
application was writing on a memory page that had copy-on-write flag on. This is a default
FreeBSD kernel behaviour and not implemented in the project. The hardware page fault is
handled by the kernel virtual memory management that will eventually create a vm-shadow-
object for the existing vm-object. The shadow object is mapped to the original vm-object
having a mapping to the original memory pages. The memory page that is affected by the
write operation is copied and mapped to the vm-shadow-object. In addition, the application’s
virtual memory map is updated to point to the shadow object. The copied and edited memory
page can be seen as a delta chunk from the versioning point of view. In a way, the original
vm-object works as a handle for the original publication, the shadow-object works as a handle
for the delta. This kind of functionality has a strong relationship to the well-known version
controlling systems like CVS [8] and SVN [9]. In addition, it is possible to see the analogy
between vm-shadow-objects and ZFS [10] snapshots that are both based on “deltas”, i.e.
storing only the differences between versions instead of complete versions.

Kernel
VM

Application

Application’s
vm map
(0x56000-0x56fff)

vm object
(handle to publication-0)

Page 0
(Metadata)

.

.

”11111010...”

Page 1
(1010101...)

Page N
(...1010101)

vm shadow object
(handle to publication-1)

Page 1’
(1111101...)

Copy-on-write

3. map shadow object to
application’s
memory map

1. Page fault

2. Create shadow
object

Original
publication’delta’

Figure 13 - Writing to a Publication

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 31(37)

4.3.3.4 Subscribe
 Figure 14 illustrates the set of procedures that are required at the node to subscribe to data.
The ‘subscribe’ system call contains at least the RId. The system call ends up at the PSIRP
kernel module. The RID is given as a filename in the ‘read’ call to the PSIRP daemon. The
daemon returns the memory address of the metadata location if the metadata is already
locally cached at the host. Otherwise, the daemon triggers a subscription towards the network.
Depending on the parameters given in the ‘subscribe’ system call, the ‘open’ call from the
kernel module to the file system may be non-blocking or blocking. In the former case, the
‘open’ returns right after triggering a subscription in the network. In the latter case, the ‘open’
call returns once all the data is received and stored locally at the host.

Once the ‘open’ call returns, the kernel module creates a new vm-object and associates it with
a vnode pager. Using the vnode pager it is possible to have the page faults end up with the
PSIRP daemon. (Otherwise, the FreeBSD’s default pager would page out memory pages to
the swap partition.). If the ‘open’ call returns before metadata is received, it allocates a PSIRP-
INITIAL size of memory for the data. It may be possible to resize the memory area after
getting the metadata, the metadata containing the length of the subscribed data. Based on
this information the kernel module is able to reserve the right number of memory pages that
are mapped to the vm-object. In addition, the vm-object is mapped to the application’s virtual
memory map. The ‘subscribe’ system call returns a memory address to the application. The
subscribed data is available for the application starting from this memory address.

As earlier mentioned, if the daemon did not fetch data after the ‘open’ call, the memory pages
do not contain the subscribed data. When the application accesses the memory area that was
allocated for the data there will be a page fault. The page fault ends up with the PSIRP
daemon via the vnode-pager. The daemon triggers a subscription procedure for that specific
memory page. The 4096 byte memory page is the smallest size of data chunk that is used in
the architecture. It is carried in jumbo Ethernet frames in the link. Therefore, the prototype
does not need to implement fragmentation between the end-points.

syscalls

PSIRP Kernel I/O module

Application

Application’s
vm map
(0x56000-0x56fff)

1. subscribe(ID, params)

vm object
(handle to publication)

FUSE daemon
2. read(”/pubsub/ID”)
(returns metadata location
or gets it from the network if
not cached, may block
depending on the application)

3. map the
object

vnode_pager

4. read memory

5. read page

6. read from nw

Figure 14 - Subscribing to a Publication

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 32(37)

4.3.4 Network I/O
The network I/O module is part of the PSIRP daemon. The network I/O takes care of capturing
frames from the link and transmitting frames to the link. The PSIRP daemon is implemented
using multiple threads. The main thread is listening to events from the FUSE library. In
addition, the capturing and transmission procedures are implemented in own threads using
queues per direction. The frame error detection is strongly bound to the security approaches
taken in this project. Basically, the error detection can be based on different kinds of hash
algorithms and public-key technology. Error detection may result in re-subscribing the
publication or part of the publication, depending on the application.

4.3.5 NetFPGA
NetFPGA [23] is an open platform that allows for development and evaluation of highly
customized network routers, switches and interfaces. It enables customization up to the MAC
layer, since only the Ethernet physical layer (PHY) is fixed in hardware. The platform includes
a PCI card and sources (with BSD license) for reference software (Ethernet NIC, router and
switch) that can be used as a starting point for the development. PHY layer, some memory
circuits, connectors (e.g. SATA, PCI, Ethernet) and FPGA circuit are integrated on the PCI
card. The Ethernet PHY supports four 1 gigabit ports. The presented features make the
platform suitable for the needs of the PSIRP project to implement e.g. fast forwarding
prototype with required authentication functions.

The most important feature of the NetFPGA is that the FPGA circuit can be used to implement
some network functionality at the hardware level. The FPGA is configured by using a
hardware description language, providing the advantage that it can be used to implement truly
concurrent functionality.

It is planned to modify the current router implementation so that various custom routing
functions can be tested on hardware level. The goal is to find out what can be and what
should be implemented in hardware and to find out what is required from the hardware to do.
Also depending on the implemented routing functions it might be interesting to make
comparative performance measurements between the current TCP/IP based implementation
and these customized implementations on the same platform.

NetFPGA is used in various universities for research and educational purposes and therefore
it is likely that research results based on this platform will be published by other parties. That
would allow reliable performance comparison between our implementation and others with the
same platform. At the first stage, the forwarding function of the PSIRP prototype will be
implemented on the card. This is done by gradually modifying either existing router or switch
implementation. At this stage, the plan is to replace parts that are used for IP based
forwarding with our own implementation that is based on forwarding labels. In practice the
implementation derives a forwarding label from the packet and makes a decision on which
port the packet is forwarded based on the label.

The part that makes the decision about forwarding will be implemented so that it would be
easy to customize. After that it is quite easy to test and refine different methods for forwarding,
those can include for example lookup table based forwarding or z-filters.

4.4 PSIRP API and Module Interfaces
The following subsections define the required interfaces for the application development,
including both the user applications as well as helper applications. The helper applications
have different kinds of needs than the normal user applications, thus a separate interface with
some additional functionality is created for them. In addition, there are internal interfaces that
are required to support the communication between different modules.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 33(37)

4.4.1 Libpsirp
Libpsirp is a shared C library that hides the system call specific details from applications and
can also perform other helper functions. The main purpose at the beginning is that it uses
system calls provided by the PSIRP I/O kernel module to implement the API and the
Advanced API.

The Simplified Wrapper and Interface Generator (SWIG) [7] are used to generate the
corresponding Python API (Network Attachment) and Ruby API (Rendezvous Point) from the
libpsirp C code. Parameterizations for the platform specific API calls are supposed to be the
same as in the C library.

4.4.2 API
The API provides the following functions for applications:

• create

• publish

• subscribe

• unsubscribe

• release

Create is similar to malloc() or mmap() in the standard C library. It simply allocates the
requested amount of memory to the calling process and returns the address of the allocated
memory area. This memory area can be later used to publish data. This function is specific to
the prototype implementation due to the memory management and process structure
properties of the FreeBSD operating system, not because of the requirements from the
conceptual PSIRP architecture. On some other operating system this function may be
unnecessary and existing memory allocation library calls can be used.

Publish creates a snapshot of a memory area of given length from the given address. It can
take parameters such as the Scope ID and the Rendezvous ID, if the application desires to
specify those itself. If these are left unspecified, the PSIRP Daemon will automatically allocate
the IDs. In addition, parameters in the publish system call may include, but are not limited to,
e.g. the lifetime and the type of the publication. The application gets the IDs allocated to the
publication after a successful function call.

Subscribe maps a publication to a memory location. The subscribe call requires a
Rendezvous ID of the publication and optionally also the Scope ID. If the Scope ID is left
unspecified, it defaults to the local scope (“localhost”). Subscribe call may be blocking or non-
blocking. In the case of blocking, there is a fixed timeout. In the case of non-blocking, the
subscribe call returns and only accessing the publication data will cause blocking when the
missing parts are fetched from the network or from the cache. As the Rendezvous client
module is also using the same API, there needs to be a special flag to prevent “rendezvous
loops”.

Unsubscribe unmaps the publication from the calling process, and removes the subscription
from the subscription table and forwarding table. Unsubscribe requires a Rendezvous ID and
optionally also the Scope ID.

Release is the counterpart of create. The application may call this when it doesn’t want the
publication to be mapped to its memory space any more. This does not affect copies of
publications in other nodes or in other processes in the same node. Release takes a memory
address as the parameter, as the calling process may have (for some reason) mapped the
same publication in several memory locations by calling subscribe with the same Rendezvous
ID several times.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 34(37)

4.4.3 Advanced API
The helper applications (Network Attachment, Rendezvous Point, etc.) use the same API as
normal user applications, but they need extended functionality, which is present in the
“Advanced API”. One example of such functionality is the ability to configure the forwarding
tables (like co-located Rendezvous Point and forwarding node in the first prototype). Another
one is the system call needed for the PSIRP Daemon to register the FUSE file system mount
point into the PSIRP I/O kernel module during the start-up.

On top of the system call library API, the Simplified Wrapper and Interface Generator (SWIG)
is used to generate corresponding Python API (Network Attachment) and Ruby API for the
system call interface.

4.4.4 Module interfaces
In the first prototype, we try to use the pubsub-api in as many places as possible. However,
there do exist extra interface besides our pubsub-api:

• The Ruby - MySQL interface is required for the database implementation in the
rendezvous point implementation.

• The interface between libpsirp and the I/O kernel module is used for transmitting psirp
API related system calls to the kernel module. A new system call number is defined for
the interface in the FreeBSD kernel.

• The kernel module communicates with the daemon using the virtual file system (VFS)
calls and vnode-pager with the daemon. In addition, the daemon may use the libpsirp
API to store the received publications locally at the node.

• The interface between PSIRP daemon and Ethernet is implemented using 'libpcap'
[11] and 'libnet' [12] library routines.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 35(37)

5 Abbreviations
AId Application Identifier

ASIC Application Specific Integrated
Circuit

DoS Denial of Service

DTN Delay Tolerant Network

ECC Elliptic Curve Cryptography

FId Forwarding Identifier

FPGA Field Programmable Gate Arrays

FUSE File system in User space

PSIRP Publish Subscribe Internet
Routing Paradigm

PLA Packet Level Authentication

LoLI Lower Layer implementation

NREN National Research and Education
Network

RId Rendezvous identifier

RP Rendezvous Point

SId Scope Identifier

SWIG Simplified Wrapper and Interface
Generator

TTP Trusted Third Party

UpLI Upper Layer implementation

VFS Virtual file system

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 36(37)

6 References
[1] PSIRP: D2.2: “Conceptual Architecture”,

http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-
D2.2_ConceptualArchitecture_v1.1.pdf

[2] PlanetLab, http://www.planet-lab.org

[3] Onelab3: http://www.one-lap-2.org

[4] PSIRP: D3.1, “Implementation Plan”,
http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-
D3%201_PrototypePlan.pdf

[5] File system in User space, http://fuse.sourceforge.net/

[6] Marshall Kirk McKusick and George V. Neville-Neil. “The Design and
Implementation of the FreeBSD Operating System”. 1994.

[7] Simplified Wrapper and Interface Generator, http://www.swig.org/

[8] Per Cederqvist et al. “The CVS manual — Version Management with CVS”.
ISBN: 0-9541617-1-8. 2006.

[9] Subversion, http://subversion.tigris.org/

[10] ZFS, http://opensolaris.org/os/community/zfs/

[11] libpcap, http://www.tcpdump.org/

[12] libnet, http://www.packetfactory.net/libnet/

[13] Altera, HardCopy Structured ASICs: technology for business [online], 2008,
available from: http://www.altera.com/products/devices/hardcopy/hrd-index.html

[14] B. Brumley and K. Nyberg, “Differential properties of elliptic curves and blind
signatures,” In Proc. of Information Security, 10th International Conference -
ISC '07, volume 4779 of Lecture Notes in Computer Science, pp. 376-389,
Springer-Verlag, 2007.

[15] C. Candolin, “Securing military decision making in a network-centric
environment,” doctoral dissertation, Helsinki University of Technology, Finland,
2005.

[16] J. Forsten, K. Järvinen, and J. Skyttä, Packet level authentication: Hardware
subtask final report, Technical report [online], 2008, available from:
http://www.tcs.hut.fi/Software/PLA/new/doc/PLA_HW_final_report.pdf
[Accessed 25th July 2008].

[17] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA design of self-certified signature
verification on Koblitz curves,” In Proc. of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2007, Vienna, Austria, September,
2007, pp. 256-271, Springer-Verlag LNCS 4727.

[18] Kobliz, “Elliptic Curve Cryptosystems,” Mathematics of computation, Volume
48, pp. 203-209, 1987.

[19] D. Lagutin, “Redesigning Internet - The Packet Level Authentication
architecture,” licentiate's thesis, Helsinki University of Technology, Finland,
June 2008.

Document: FP7-INFSO-ICT-216173-D3.2
Date: 30/09/2008 Security: Public

 Status: Completed Version: 1.0

PSIRP CONFIDENTIAL INFORMATION 37(37)

[20] V. Miller, “Use of elliptic curves in cryptography,” In Proc. of the Advances of
Cryptology – Crypto '85, Santa Barbara, USA, August 1985.

[21] NS-3, http://www.nsnam.org

[22] PSIRP: D4.1, “Preliminary Validation Plan and Selection of Tools”,
http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-
D4.1_ValidationPlan-1.pdf

[23] NetFPGA, http://www.netfpga.org

