

PSIRP
Publish-Subscribe Internet Routing Paradigm

FP7-INFSO-IST-216173

DELIVERABLE D3.5

Final Description of the Implementation

Title of Contract Publish-Subscribe Internet Routing Paradigm
Acronym PSIRP
Contract Number FP7-INFSO-IST 216173
Start date of the project 1.1.2008
Duration 33 months, until 30.9.2010
Document Title Final Description of the implementation
Date of preparation 6.5.2010
Authors Petri Jokela (LMF), Janne Tuononen (NSNF), Jimmy

Kjällman (LMF), Borislava Gajic (RWTH), George
Xylomenos (AUEB), Konstantinos Katsaros (AUEB),
Jukka Ylitalo (LMF), Dmitrij Lagutin (AALTO-HIIT),
Walter Wong (LMF/AALTO-HIIT), Kaloyan Petrov (IPP-
BAS), Vladimir Dimitrov (IPP-BAS), Ventzislav Koptchev
(IPP-BAS), Dirk Trossen (UCAM)

Responsible of the deliverable Petri Jokela (LMF)
 Phone: +358 9 299 2413
 Fax: +358 9 299 3535
 Email: petri.jokela@ericsson.com
Reviewed by Arto Karila
Target Dissemination Level Public
Status of the Document Completed
Version 1.0
Document location http://www.psirp.org/deliverables/
Project web site http://www.psirp.org/

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 2(28)

Table of Contents

1 Introduction ... 3

1.1 Abbreviations ... 3

2 PSIRP Prototype ... 4

2.1 Blackhawk .. 4
2.2 Rendezvous Node ... 14
2.3 Topology Management .. 16
2.4 Application ... 20
2.5 Language Bindings .. 22
2.6 Example of Current Integration Plans .. 22

3 Open Source Release ... 23

3.1 Blackhawk .. 23
3.2 NetFPGA forwarding implementation .. 23
3.3 Packet Level Authentication (PLA) .. 24
3.4 Documentation ... 24

4 PSIRP Testbed ... 24

4.1 Testbed Set-up .. 24
4.2 Virtual Test Bed Set-up .. 25
4.3 Applications ... 26

5 Evaluation of the Work .. 26

5.1 Rendezvous Node ... 27
5.2 Blackhawk .. 27
5.3 Topology Management .. 27

6 Conclusions .. 27
7 References .. 28

This document has been produced in the context of the PSIRP Project. The PSIRP Project is
part of the European Community’s Seventh Framework Program for research and is as such
funded by the European Commission.
All information in this document is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this
document, which is merely representing the authors view.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 3(28)

1 Introduction
It has been the declared goal of PSIRP to complement the architecture and technology
development within the project with a clear implementation effort that realises and tests our
developed technologies in a realistic setting, i.e., with available technology. The intertwined
nature of such implementation with the development of our architecture and protocol
technologies has been crucial for the project since the lessons learned in implementation
have been directly fed into the progress on the architectural and protocol levels.

In this document we describe the current status of the PSIRP prototype implementation. The
implementation itself has been done in separate modules, e.g. Rendezvous, Topology, host
internal blackboard based publication management and packet forwarding. In addition,
security features in the form of Packet Level Authentication (PLA) have been implemented, as
well as various test applications that utilize the PSIRP prototype platform. We describe these
different modules through this document.

The final target of the project is to produce an integrated PSIRP prototype, providing an
implementation of the designed PSIRP architecture. This integrated prototype is to be show-
cased as well as tested within a growing multi-site testbed. This document describes the
setup and status of the testbed efforts. We also outline the applications that are envisioned for
this testbed.

Last but not least, this document provides a brief overview of the level of integration between
the different components. This integration work is currently ongoing as specified in deliverable
D3.4 [3].

1.1 Abbreviations
LId – Link Identifier

RId – Rendezvous Identifier

SId – Scope Identifier

vRId – Version-RId

pRId – Page-RId

PIT – Publication Index Table

Pubi – Publication Index

RVS – Rendezvous

TCC – Traffic and Congestion Control

SMC – State Machine Compiler

ECN – Explicit Congestion Notification

RN – Rendezvous Node

RP – Rendezvous Point

LSA – Link State Advertisement

TM – Topology Manager

PLA – Packet Level Authentication

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 4(28)

2 PSIRP Prototype
The PSIRP prototype development has followed the generic design as defined in the early
phase of the project. The core of the implementation is the so-called blackboard based host
implementation, which handles publication management inside the host. The implementation
of the blackboard system is called “Blackhawk” and it is presented in Section 2.1. The
Blackhawk implementation also defines an Application Programming Interface (API) that all
applications, including the PSIRP architecture helper applications, use for publishing and
subscribing to publications. The core functions of this API are publish() and subscribe().

The two fundamental helper functions, defined in the PSIRP architecture, namely Topology
management and Rendezvous, are implemented on top of the Blackhawk core. The
Rendezvous module, presented in Section 2.2, handles the publication management by
maintaining the publication metadata information and matching subscriptions to publications.
The module also handles the publication management by maintaining the publication
metadata information, and matching subscriptions to publications. The Topology management
module, presented in Section 2.3, is responsible for maintaining and exchanging the network’s
topology information on an intra-domain level. It also creates paths and related Forwarding
Identifiers for subscribed publications based on the requests from the Rendezvous system.

The reader is assumed to be familiar with the terms and structure of the PSIRP system
architecture as described in the conceptual architecture [1], the contents of the
implementation progress report D3.3 [2] and the integration and demonstration plan D3.4 [3].

2.1 Blackhawk
Figure 21 depicts the architecture of the Blackhawk prototype on a high level. The architecture
itself has not changed since D3.3 [2] and D3.4 [3], as the focus of the prototype development
work has been on increasing stability, adding features needed for integration of different
components and API usability improvements.

Figure 1 Blackhawk architecture

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 5(28)

2.1.1 The pub/sub kernel module

The blackboard is the local repository for publications residing in the memory of each
computer running Blackhawk. Both the content (data) and metadata of publications is stored
in the blackboard. Next, we briefly describe the design of the blackboard and how it is
integrated with different parts of the FreeBSD operating system.

Virtual Memory System Integration

The blackboard resides in the operating system's kernel space as a loadable module and is
integrated with the virtual memory system. Thus, the content of a publication can be accessed
in a very natural and efficient manner: the data are mapped into an application's memory
space so that the application can get a pointer to that memory area. This memory area can be
accessed just like any other allocated memory.

In FreeBSD's virtual memory system [8], data is (virtually) stored in pages with a default size
of 4096 bytes. Each of the pages belongs to a virtual memory object and has a specific index
within that object. VM object shadowing is employed for the sharing of pages between
objects. In our blackboard implementation, we keep two VM objects for each publication: one
for metadata and one for data.

The metadata object size is currently one page per publication. It acts as a placeholder for the
RId and size of the publication, as well as other essential information. Applications in user
space get indirect read-only access to this information through accessors in the pub/sub
library (i.e., libpsirp, described later in this document).

The data object, on the other hand, points to memory pages that hold the actual content of the
corresponding publication. This object (or only a part of it) is mapped to applications using the
copy-on-write concept. This means that several applications can be given read-write access
to the same memory if they subscribe to the same publication. If they modify the subscribed
data, copies will be made of the changed pages, while the unmodified ones remain shared. In
order to make those changes visible to other node-local subscribers, or the original creator,
the data needs to be re-published. This results in a new version of the publication.

Figure 2 Publication versions can share pages

File and Event System Integration

The blackboard is integrated with the node's file system which provides multiple advantages.
Firstly, each publication can be accessed, currently only with read access, through a normal-
looking file on the computer. This provides us with an alternative, legacy-compatible API
(Figure 3) for the blackboard system. Secondly, it is easier to support kernel event (kevent)
queues (kqueues) for generating notifications when new versions of publications are created.
Thirdly, it enables demand paging over the network, although this feature is still
unimplemented in Blackhawk. However, the concept has been presented already in earlier
deliverable D3.2 [9] and has been used in one of the early demonstrators [3]. Having our own
file system type (psfs) in the kernel is more efficient than using one in user space (e.g. via
FUSE). It also simplifies the required interactions between the file system part and the rest of
the blackboard components.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 6(28)

Figure 3 Pub/Sub file system view

In user space, applications get an open file descriptor when they subscribe to a publication, or
publish a newly created one. Using that descriptor, the application can register to kevents.
This may happen implicitly, depending on the API functions used. When a publication is
updated, a special event notification is dispatched from the kernel via a vnode to the
subscribing entities. Here we have created our own vnode type, called pnode, and use a
special type of knote, NOTE_PUBLISH, that the subscribers have registered to listen at.

Data Object Model

Next, we have a look at the hierarchy of publication objects stored in the blackboard.
Blackhawk currently has four different publication types: Scope, Data (or concept), Version,
and Page publications, as shown in Figure 4.

Figure 4 Publication hierarchy generated from a real system

Conceptually, scope publications are containers for data publications (see Figure 4). Scopes
are, proverbially, identified by SIds. On the implementation level they contain a list of RIds in
their data object. New RIds are added to scopes by the scope daemon, which gets notified
about all publish-operations in the node. This helper application simply subscribes to a scope
that may have been updated, modifies its contents if needed, and re-publishes it.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 7(28)

A data publication is identified using a RId, and it refers to some data item whose content
does not need to be immutable.

Since a data publication can have several versions, the publication hierarchy includes version
publications with immutable content. The identifier of a version publication is a content-
dependent version-RId (vRId), implemented as the root hash of a (skewed) Merkle hash tree
of the data.

Finally, we find page publications on the lowest level in this hierarchy. They correspond
directly to the memory pages in the data objects, and are identified by page-RIds (pRIds) that
are formed by hashing page contents, e.g., with SHA-1. The content of a page publication is
also immutable.

Node-local Rendezvous

The blackboard needs to provide node-local, in-kernel rendezvous. This means that if
somebody has published data under a SId/RId pair, subscribers should get that data when
they subscribe to the same pair. In addition, it is also possible to subscribe to specific data
with vRIds and pRIds. For this purpose, the blackboard contains a lookup table called
Publication Index Table (PIT). The publication identifiers, i.e., SId, Rid, vRId, and pRId, are
used as keys for accessing that hash table.

The PIT can consist of multiple, potentially swappable, VM pages. Each page has a number
of buckets that contain a couple of PIT entries. For optimization reasons, entries on sub-
pages can be moved "upwards" when they are accessed. Each PIT entry, if filled, contains an
Id, and a mapping from that Id to a Publication Index (pubi). A pubi is a data structure that
holds additional metadata needed only in the kernel, including e.g., pointers to the data and
metadata VM objects as well as to the vnode for the publication.

To complete the in-kernel operations, we need to describe the actual lookups when
subscribing to a data publication in a specific scope, or when re-publishing something and
implicitly checking for already existing versions. As described above, scopes have a list of
RIds in their data object. Similarly, data publications have a list of version-RIds and version
publications have a list of page-RIds in their metadata object. To find a data publication in a
scope, we first look up the scope in the PIT by the SId, get the data page from the pubi, and
check whether the RId is in that data. If the RId is found, we perform a second lookup using
the RId as the key. This time we can get the metadata and data objects and map them for the
user space application subscribing to the publication. If we subscribe using only a SId and a
RId, the latest version of the publication is returned.

The procedure is the same for finding a specific version under a data publication, except that
the data publication's RId would be used as the SId, and its metadata object would be used as
the "scope" in the first lookup. Similarly, the metadata of a version can be used as a scope
when subscribing to a specific page. However, these steps are not required in a normal
subscription with a SId/RId pair.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 8(28)

Figure 5 PIT, pubi, and metadata

Figure 5 shows the PIT on the left-hand side. As one hash bucket is full, it further points to a
sub-page. A PIT entry points to a publication index in the middle, which in turn points to a
metadata page of, e.g. a data publication or a version on the left-hand side. The metadata
object contains RIds that can be used in further PIT lookups.

2.1.2 Native pub/sub API

The kernel module has a system call interface towards the user space. In practice, this
interface is not supposed to be used as an API in normal applications which should use the
libpsirp API library, which provides instead all the essential pub/sub functions. Applications in
user space use this library to communicate with each other through the blackboard.

New publications can be created with the psirp_create(len, *pub) function, where len refers to
the requested size of the content. It returns a handle (pub), which is a pointer to a data
structure containing a pointer to the data, length, Ids, and file descriptor of the publication,
among other things. However, the structure is not accessed directly, but through getter
functions.

Publishing the created publications is done with psirp_publish(sid, rid, pub) where sid and rid
are identifiers, and pub is the handle. psirp_subscribe(sid, rid, *pub) is used for subscribing to
a publication. By default it returns the newest local version.

The API also contains other variants of the functions mentioned above, for instance for
synchronous (blocking) subscribing, as well as auxiliary functions needed, e.g., for operations
on identifiers. The API reference can be found at http://code.psirp.org.

The kevent/kqueue mechanism in FreeBSD can be used for registering and listening to
publication update events. This is similar to using, e.g., the select() call to wait for file or
network events.

2.1.3 Helper applications for pub/sub networking

The architecture defines helper applications (in user space) that take care of certain special
functions in the prototype and correspond to some of the components in the PSIRP

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 9(28)

component wheel. The core prototype includes two of these helpers at the moment: the
network I/O daemon and the local rendezvous daemon.

Figure 6 Internal architecture of the network I/O daemon

Network I/O Daemon

The network I/O daemon (netiod, Figure 6) sends and receives packets on the link layer
through sockets. Currently it uses broadcast Ethernet frames, but (overlay) networking over
UDP has also been planned. Secondly, this helper implements packet forwarding with
zFilters. It implements the basic forwarding functionality, i.e., matching FIds to the Link IDs
(LIds) of outgoing interfaces.

The LIds used by netiod are statically configured in a configuration file, /etc/netiod.conf. One
of those LIds should "point" to the node itself, thus providing a “virtual interface” which, if
present in the incoming zFilter, actually takes the packet to node internal processing instead
of just forwarding it to others or possibly dropping it.

Since normal Ethernet links can only send and receive ~1500 bytes per frame, a 4096-byte
page with headers does not fit into a single packet. For this reason, the network I/O daemon
needs to handle publication fragmentation and reassembly. The complete publications that it
has received from the network, it publishes in the local node's blackboard.

When compared to the v0.2 release, Blackhawk v0.3 alpha features rudimentary multicast
support: when packets are put to outgoing packets queue, the existing queued chunks are
scanned. If identical chunks are found, their FId is updated, and the new packet does not
need to be added. The number of simultaneous pending data subscriptions has also been
increased.

For the prototype, the following packet format has been specified: The packet begins with a
forwarding header that includes a FId, TTL value, and other forwarding-related information.
This header is followed by a rendezvous header, containing the SId, RId, vRId, and sequence
number of the publication / data chunk. If security features are enabled, the PLA header, also
called the security header, follows the rendezvous header. If the packet is used for signalling
published metadata, a subscription to metadata, or a subscription to data, a placeholder for
metadata is included. This element contains a SId, RId, vRId, the return-FId to be used for
forwarding packets back from the receiver to the sender, the data length and the signal type.
Alternatively, if the packet contains only a chunk of a publication’s content, the last part of the
packet is just generic payload (e.g. 1024 bytes).

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 10(28)

Local Rendezvous Daemon

Figure 7 Internal architecture of the local rendezvous daemon

The local network rendezvous helper (laird, Figure 7) deals with pub/sub operations between
nodes in a LAN. In other words, it enables publish/subscribe operations between nodes in the
local network.

This daemon listens to all subscribe-events that occur in the local node. It also listens to
updates to all local publications: initially it monitors "Scope 0", the so-called node-local root
scope in Blackhawk, and afterwards it recursively registers to listen to all sub-scopes and all
publications in those scopes.

The local network rendezvous daemon issues publish and subscribe commands to the
network when these operations occur locally. When a new publication is created or an old one
is updated, metadata is sent to a local rendezvous node that caches the metadata. Each node
knows a default FId pointing towards one default rendezvous node, and they use that FId for
sending out any information if no other destination has been explicitly defined.

When the rendezvous node receives a subscription and is aware of a data source for that
publication, it can relay the data subscription to that source. When the subscription then
reaches the source, the local rendezvous daemon in that node tells the network I/O daemon
to send the publication data to the subscriber using a collected reverse-path FId (found in the
metadata).

When compared to Blackhawk v0.2, the local rendezvous system has as a new task to
maintain state for pending subscriptions. In the current version of Blackhawk, v0.3 alpha at
the time of writing, subscriptions can be persistent. This means that a node can request to get
all future versions, possibly the current one included, from the rendezvous node. When new
versions get published, and the local rendezvous daemon learns about them, the node
receives notifications (i.e., metadata) about those versions and can fetch the corresponding
data.

In addition, support for subscribe-before-publish has been added. This means that the local
rendezvous node maintains state for pending subscriptions from other nodes until it finds out
a matching publication.

Helper-to-helper IPC

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 11(28)

Blackboard-based IPC is used as the sole communication mechanism between the network
I/O and local rendezvous helpers within a node:

 Both helpers have two common initial RIds in Scope 0 (the node-local root scope)

 Both helpers subscribe and listen to their own "IPC-RId", and publishe updates with
the other entity's current RId

 These RIds can be updated when, e.g., the version number limit for one RId is coming
close

 A common IPC publication format is known by both parties

Using this scheme, laird publishes information about publications and subscriptions to netiod,
and netiod publishes received information (metadata) to laird.

Network Signalling Model

Figure 8 illustrates the local rendezvous signalling in a simple pub/sub scenario. First, a
publisher publishes the metadata (identifiers, size, path to source) of a new publication to the
local rendezvous node. When a subscriber wants to get the publication, it first subscribes to
the metadata, since it needs to know at least the publication's version-RId and length. The
metadata can be sent from the RVS node's cache. Finally, the subscriber subscribes to the
actual data and the RVS node forwards this request to the publisher who finally sends the
publication in chunks to the subscriber.

Figure 8 Message Exchange Example

2.1.4 Packet Level Authentication

In [2], the main features of the PLA implementation are described. Since then, the
implementation has been integrated with the Blackhawk v0.3 implementation.

2.1.5 Transport and Caching Publication chunk requests

In addition to the existing 'subdata' packet type used in Blackhawk by subscribers to request
all publication packets, a 'subdatachunk' request is implemented allowing subscribers to
request specific publication chunks. The mechanism is used by the 'Lost chunk recovery',
'Data caching' and 'Subscriber controlled Traffic and Congestion Control (TCC)' schemes, as
described below. The requested publication chunks are specified by their sequence numbers
and are included in the 'subdatachunk' packet payload as an array with the number of
requested packets as the first element, followed by the sequence numbers of the packets.

Lost chunk recovery

A 'flow' sequence number is added to the packet header where 'flow' stands for a given
'subdatachunk' request. In general a 'subdatachunk' packet requests a subset of all
publication chunks, which makes the 'flow' sequence number different from the publication

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 12(28)

sequence number. The 'flow' sequence numbers are sequential, with the last sent packet of a
given request having number zero.

Lost chunks are detected in two ways:

 When the last packet of a given request (recognized by a zero 'flow' sequence
number) is received, any missing packets from that request are considered lost and
the subscriber sends a 'subdatachunk' request containing only those.

 Cases when the last packet of a request is lost are handled by a program running in a
separate thread. For each active publication the program keeps track of the system
time the last packet was received. The program checks all active publications at
regular time intervals, the default value being one second. If for an active publication it
is determined that there are missing requested packets and the time elapsed since the
last packet was received (or the active publication created) is greater then a
predetermined constant value (one second by default), all requested packets which
are missing are considered lost and a 'subdatachunk' request containing only those is
sent. If necessary the process is repeated up to 5 times by default, after which if there
are still missing packets of the given request, no further attempts are made and the
active publication is freed.

Data caching

The caching mechanism consists of a single cache store per node servicing all network
interfaces with the following configurable parameters:

 Cache Check Interval - the time interval at which the cache is checked for old entries.
The default value is 60 seconds.

 Cache Timeout - the time interval since a cache entry was entered or last used after
which the entry is considered old and removed. The default value is 5 minutes.

 Cache Size - the size of the cache in number of packets. The default value is 1000. If
the cache size is exceeded new entries are not stored until space is available.

The cache stores clones of all incoming data packets. Duplicate entries are not stored. If a
'subdatachunk' packet is received by a node the cache is checked for the requested content.
Any found packets are sent back to the requesting node and if necessary a modified
'subdatachunk' request containing only the requested chunks which were not found in the
cache is forwarded towards the publisher. At this point, if a 'subdata' request is received by a
node the cache is not checked. The reason for this is that even though the caching
mechanism can find and return all available chunks for a given publication, the node has no
information to determine if any chunks were not found in the cache and thus cannot forward a
modified 'subdatachunk' request containing only the missing chunks. A workaround which is
not implemented at this point could be for the node to send a 'negative subdatachunk' request
containing the chunk numbers which are not needed. Once such a request is received by a
node it would send all but the packets included in the request.

The data caching is implemented as a shared library written in C++. The C interface for use in
Blackhawk consists of three functions:

 void encache(pkt_ctx_t* pubdata), where the argument is a pre-parsed clone of the
original 'pubdata' packet received by the node. The clone ownership is transferred to
the cache. The clone is deleted by the cache cleanup thread when it is determined to
be old.

 pkt_ctx_t** getpubdata(pkt_ctx_t* subdatachunk, unsigned int* len). The first argument
is the 'subdatachunk' packet received by a node containing the sequence numbers of
the requested chunks. The function returns an array containing all or a subset of the
requested chunks and sets the second (output) argument to the length of the array.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 13(28)

 cache_unlockItem(pkt_ctx_t* pubdata). Cache entries are returned in a locked state
which prevents the cache cleanup thread from removing them. This function is needed
to release the locks after the entries have been processed.

TCC - sender controlled

In this TCC version the rate towards the congested area is controlled at the nodes that send
publication data. For that purpose, all nodes have a separate output queue for each traffic
flow. The queues are serviced in a round-robin fashion and each queue rate is controlled by a
token bucket filter. A node communicates a congestion condition to the previous node in a
path via a special choke packet. A congestion condition is determined by either a packet loss
or an output queue getting full. In addition, all nodes have a single input queue where all
incoming packets wait to be processed with the goal of using this queue as an indicator of
node overload. At this point, packet loss is only detected at the subscriber. When a node
receives a choke packet, it reduces the sending rate of the queue corresponding to a classId
placed in the choke packet's payload. Currently, the rate is dropped to a predetermined level
after which it gradually raises with each sent packet if no other choke packets concerning this
particular queue are received.

The module is implemented as a shared library written in C++ with a C interface:

 void tbf_enqueueOut(const psirp_fid_t* fid, if_list_item_t* iface_out, const void* buf,
size_t len, int flags); The first argument is used to classify traffic flows. It is followed by
the output interface, the beginning of the packet, the packet length and the flags to use
with the sendto syscall when the packet is dequeued.

 unsigned int tbf_congestionCheck(const psirp_fid_t* fid, char* classId); checks if the
output queue corresponding to the FID provided as the first argument is getting full.
Returns a congestion status: 0 (no congestion), 2 (the queue is filled above 50%), 4
(the queue is full). Sets the second argument to the ID of the queue. The caller uses
the classId to initialize the payload of the choke packet. A node that receives a choke
packet uses the classId to modify the sending rate of the particular queue
corresponding to the classId.

 char* tbf_classify(const psirp_fid_t* fid); Returns the classId corresponding to the FID.
Used for sending choke packets when the input queue is congested.

 void tbf_reduceRate(char* classId); Reduces the sending rate of the corresponding
queue.

TCC - subscriber controlled

In this TCC version, the rate towards the congested area is controlled indirectly by the
subscriber through the number of chunks it requests at a time. The subscriber starts by
requesting one, then two, four, eight and so on packets if each previous request was
answered successfully - meaning all requested packets were received. If a packet loss is
established the subscriber requests only the lost chunks and increases the number of chunks
in its next request from this new starting point.

2.1.6 Transport Simulator in NS3

We are using SMC - The State Machine Compiler - to generate a transport state machine for
ns-3 simulations. SMC uses the well-known 'State' design pattern for class generation. We
believe that this is the first time that SMC is used together with ns-3 development. The usage
of SMC improves code quality and speeds up the transport design cycles. In practice, we can
avoid several coding bugs in the transport state machine and change the state machine
design fast while sustaining short iteration cycles. The transport state machine is described in
the SMC meta language that is compiled to C++/Python classes used in the ns-3 simulator.
Figure 9 illustrates the transport state-machine class diagram and the dependency with SMC.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 14(28)

The transport state-machine is divided into two separate sub-state-machines, namely, the
requestor and receiver parts. The two sub-state-machines share a common protocol context.
The protocol context contains information about the number of unsent requests and window
size. Both sub-state-machines update these values in the protocol context. We have applied
the well-known 'Strategy'-pattern to implement different kinds of state-machines for the
receiver. Currently, we have identified two different strategies for the receiver, namely,
strategies for Explicit Congestion Notification (ECN) supported and unsupported forwarding
paths. Our design allows the receiver to update dynamically its strategy. In addition
developers can design and implement new alternative strategies easily. We have not applied
the 'Strategy'-pattern to the requestor side due to the single state-machine implementation in
that part. However, it is possible to use the same pattern as with the receiver also on the
requestor side to simultaneously support alternative requestor strategies.

Figure 9 Transport state machine class diagram

2.2 Rendezvous Node
The Rendezvous Node (RN) prototype implementation is shortly summarized and the
changes since D3.4 [3] are highlighted in this section. The local rendezvous helper, as part of
the Blackhawk platform, is not in the scope of this text. Instead, this section covers the
rendezvous node implementation for the global rendezvous system.

The rendezvous node implementation is, to some extent, an example realization of the PSIRP
rendezvous concept defined in the conceptual architecture [1]. It supports establishing a
rendezvous network (a group of rendezvous nodes in a policy compliant tree topology), and
provides a basic rendezvous service in that network, including publish, subscribe and pre-
established subscribe services. The rendezvous concept provides global scalability by
interconnecting multiple rendezvous networks using, e.g., hierarchical Distributed Hash
Tables (DHTs). However, the interconnection layer of the concept has not been implemented.

The expected final rendezvous implementation architecture is illustrated in Figure 10,

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 15(28)

Figure 10 Rendezvous Implementation Architecture

The Rendezvous Node prototype has been implemented using Ruby1.8, while a Ruby C
extension is used for rendezvous signal creation and parsing. MySQL data tables are used for
storing both rendezvous node and rendezvous point data structures and these structures are
accessed through the standard ruby-mysql interface. The rendezvous prototype initially used
UDP for the signal transport, but as part of the successful finalization of the first phase
rendezvous integration with the Blackhawk implementation, the UDP forwarding was replaced
with the Blackhawk-Ruby-API. The underlying Blackhawk platform is now responsible for
providing the required forwarding service for the Rendezvous Node prototype. The topology
stub that was earlier simulating the operations of the Topology Management has also been
removed from the architecture figure. As part of the integration work, the responsibility of
handling that information was moved to the topology manager and the Blackhawk platform.

Since the submission of the Integration and Demonstration Plan [3] in September 2009, the
focus of the implementation work has been on integration. During the first phase of the
integration, in addition to the already mentioned communication module replacement, the
prototype code was updated to re-establish support for the features it supported before the
integration task. The first phase of integration was finished in October 2009 and after that the
resources were used for the detailed planning of the second phase. In the beginning of 2010,
the implementation work was started again with modifying the rendezvous signal formats. The
previously used tag based character string packet formats were re-designed and replaced
with a more conventional and network like, option based, implementation.

This change in signal format will provide easier signal synchronization in the second phase
integration. The new design of the rendezvous signal format is a composition of a consecutive
chain of predefined options, where the order and selection of options is rendezvous signal
type specific. The new signal format definitions, option types, and the tools for creating and
parsing rendezvous signals are implemented in a new Ruby C extension, which uses the
native Ruby C extension API. The rest of the code is still implemented using Ruby.

We expect that some changes in the signal format may be needed during the second phase,
and at this point we give only a couple of examples so that the reader can grasp the idea of
the option based rendezvous signal formats. For instance, the new “publish” rendezvous
signal format looks like this

| OPT_TYPE_RP (2 bytes) | LEN option (2 bytes) | RP Sid (32 bytes) | credential (32 bytes) |

| OPT_TYPE_PUB | LEN option | Sid (32 bytes) | Rid (32 bytes) |

| DATA_TYPE_NID | LEN option | Node ID (32 bytes) |

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 16(28)

The first option contains rendezvous point information that is needed to enable rendezvous
point creation and/or usage in the rendezvous node for the publish signal. The second option
contains the RIds of the published publication. The third option is a new topology
management related “Node ID” option. The NId is needed both from the publisher and the
subscriber in the case when rendezvous for a publication happens and the rendezvous point
requests an optimal path from the topology management server.

As a second example, we present the “subscribe” signal, which is actually similar to the
publish signal, but without the rendezvous point option.

| OPT_TYPE_SUB | LEN option | Sid (32 bytes) | Rid (32 bytes) |

| DATA_TYPE_NID | LEN option | Node ID (32 bytes) |

The very latest development in the integration work has an impact to the generic prototype
communication model and therefore also to the rendezvous signalling model. The currently
evaluated new model indicates that the generic pub/sub API will be extended with such
functionality that the previously used “transport publication” may not be needed anymore
when two rendezvous entities are communicating. The new communication model will be
described in detail in the forthcoming implementation and prototype technical report.

2.2.1 Relation to Blackhawk

The Rendezvous Node implementation relation with the Blackhawk implementation is three-
fold. Firstly, the implementation uses the Ruby version of the pub/sub API, just like any other
application, to send rendezvous signals to other rendezvous entities and the topology
management server. Secondly, the implementation has a specific requirement (extended
functionality): the pub/sub API has to be capable of providing the recorded "reverse zFilter" of
the received rendezvous signal together with the payload to the RN process, if requested.
Thirdly, in certain cases, the rendezvous point is responsible for updating the BlackHawk
forwarding table with rendezvous ID forwarding ID mappings

The second requirement is a prerequisite for the third requirement. The two latter ones are not
implemented yet and they are the main activities for the integration work. The preliminary plan
for implementing reverse zFilter provisioning is to re-use the idea in the "socket options". The
forwarding table updating will be done either using specific local pub/sub signalling or through
a specific API.

2.2.2 Relation to Topology Management

The Rendezvous Point will communicate with the Topology Manager (TM) in a pure publish-
subscribe way. When a rendezvous occurs between an existing publication and an incoming
subscription, the rendezvous point will publish an update to the well-known publication that
the TM server has subscribed to. This update contains the publication’s (Sid, Rid) pair and the
Node IDs of the publisher and subscriber. Based on this publication the TM server can
construct an optimal path between the publisher and subscriber and publish it to the publisher
together with the publication information.

2.3 Topology Management
The Topology Management module (see Figure 12) performs topology discovery by gathering
connectivity information and link-relevant information published from the helper modules of
forwarding nodes in its domain of operation. The Topology Manager subscribes to three
different publications to receive the required link state information from the network. The basic
link information is published in LSA (Link State Advertisement) publications. As optional
information, the LinkMSG publications contain more detailed information about the capabilities
of the links in the network, and the Application capability publications contain possible
application requirements in various nodes. Using this collected information, the Topology
Manager can compute optimal forwarding paths for delivering publications through the

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 17(28)

network. Our current Python based implementation of Topology Management is compliant
with the current Blackhawk v0.3 prototype.

Figure 11 Forwarding Node's Topology Modules

We have defined a set of helper modules that are required for feeding the Topology Manager
with network state information (see Figure 11). These helpers include the connectivity helper,
the application helper and the link-state helper. The main role of a connectivity helper is to
discover local connectivity information. Along with connectivity information, the connectivity
helper gathers physical level link information, e.g., delay, through an integrated physical level
helper function. In the implementation, these functions collect the information into a link state
table and update it when there are changes in the local network environment. The connectivity
helper creates a ‘Hello’ publication, and sends it to its neighbours. This publication contains
very simplistic networking information, e.g., the node’s identifier, and its interfaces. When the
connectivity helper has received the neighbouring nodes’ ‘Hello’ publications, it creates the
LSA publication and publishes it. As mentioned above, the Topology Manager is subscribed to
this publication, and it will receive it. The Connectivity Helper must reside on each of the
forwarding nodes.

The optional Link-state helper module is responsible for collecting and maintaining more
detailed link information. The link-state helper maintains a table of “known” links along with
other related and available information on them, e.g., throughput and delay values, which can
be utilized for path optimization. Each link-state helper also publishes its known table of link
information in a ‘FileMSG’ publication, thus distributing the information to its neighbouring
nodes. At the same time, the Link-state helper is subscribed to the ‘FileMSG’ publications and
receives them from the neighbours. Once it has collected this information into its table, it
creates a ‘LinkMSG’ publication from the table and publishes it. This publication will be
delivered further to the Topology Manager.

Finally, the Application helper collects requirements for the local applications, and publishes
this information in Application publications, to which the Topology manager is also subscribed.

Once the Topology Manager has acquired knowledge of the network topology, it can calculate
optimal paths, taking also into account the optional information about the link and application
capabilities, for publication delivery through the network. This Topology Manager’s path

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 18(28)

calculation module is triggered, e.g., when the Rendezvous system requests a data
transmission between two nodes.

The basic mode of operation, exchange of topology-related messages, followed by building
network state based on information about the existence of network entities, is explained in [2]
and [3]. In this deliverable we provide more detailed description of the heavily extended
topology management module.

Figure 12 Illustration of Topology Management functionality within a single domain

2.3.1 Implementation details

Connectivity Helper

The Connectivity Helper periodically publishes information about its existence in the form of
Hello messages. In order to obtain its basic configuration information, each connectivity helper
parses a configuration file defined in the command line (e.g., netiod.conf) obtaining
information about its unique ID (stored in the configuration file) and outgoing interface ID
(stored as “LID” in the configuration file). Each connectivity helper can acquire information
about possible connecting links as well (stored as def in configuration file), if such information
is provided in the configuration file. This is expected to be, e.g., information about the default
route to the Rendezvous Node. The current implementation relies only on knowledge of the
connectivity helper’s own identity, without requiring any awareness of existing connections,
but it leaves open the possibility of obtaining additional information from the configuration file.
The mandatory identity information together with additional optional info, e.g., SId, RId, time
stamp, is contained in the Hello message.

Every Connectivity helper is subscribed to Hello messages through the corresponding thread.
The thread issues relevant callbacks for processing the subscribed publications. The type of

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 19(28)

callback depends on the publication that has been received, but its main role is storing
incoming publications into a specific, predefined list. Accessing and processing of received
publications is done separately in a dedicated thread. Upon the discovery of a connecting
node and the corresponding link, the connectivity helper updates the list of its neighbours.
Besides the information about surrounding nodes the connectivity helper maintains a record
about the exact interface from which the publication came. Each neighbour’s lifetime in the
connectivity helper storage is associated with a decreasing time to live entry, which is
immediately restarted upon receipt of neighbour’s publication. If the TTL of the connectivity
helper expires, it is removed from the list of neighbours. In the case of any change in the entry
list, a LSA (Link State Advertisement) message containing neighbour IDs together with the list
of their interfaces is asynchronously published under a predefined SId/RId pair. Otherwise, a
LSA publication is issued periodically within predefined intervals.

Topology Manager

As described earlier, the Topology manager subscribes to various publications where different
types of link and usage information are published. Every subscription has a corresponding
callback for placing received publications into the capability list, saving the time of their
immediate processing and letting them to be processed by another thread when needed.
Having information about link properties and application requirements, path creation can be
influenced by putting appropriate weights to the links.

Based on the publications received, the topology manager uses a corresponding topology
graph creation class. More precisely, if it receives input from the link-state and application
helpers providing link status and application requirements, the topology manager leverages
the module which will take into account all parameters at its disposal while calculating paths.
On the other hand, if there is no input neither from applications nor the link-state helper, the
topology manager will simply rely on the basic module calculating shortest paths based simply
on the connectivity information obtained through neighbour discovery.

Link-state helper

The Link-state helper is in charge of parsing a link conditions file containing information about
links in the form of a table, where rows represent linkIDs (the outgoing interface OR the
virtualID of the destination) and columns refer to observed link parameters. The link-state
helper periodically publishes link information obtained from its locally available link-info file,
which is generated by physical level helper functions within the connectivity helper.
Simultaneously, it subscribes to the same information published by its neighbours. After
receiving a link-state info publication, the helper merges the information received from the
neighbourhood and publishes an updated version of the link information in a linkMSG
publication. The SId/RId pair of this publication is predefined. On the Topology Manager, the
last updated link info publication is used for link weight assignment and path calculation.

The functionality of merging all available link information is envisioned to reside only on
dedicated nodes in the network, thus avoiding unnecessary data re-computation and traffic
overload. Locally stored link information is obtained by a physical level helper function
incorporated into the connectivity helper’s functionality. It continuously monitors network
condition changes and updates the results in the form of a table. The current implementation
provides link delay status updates by simply managing publication time stamps while the
throughput information is hard coded for the case of a single domain.

Application helper

Application requirements are obtained and distributed throughout the network by a dedicated
application helper. It consists of a simple process that parses command line parameters,
translates them into a corresponding dictionary of parameter-value pairs and publishes the
acquired info under a predefined SId/RId pair. This publication is intended help optimizate the
path calculation procedure carried by the topology manager.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 20(28)

2.3.2 Integration

Recent implementation efforts have been focused on running the topology management
module over the network, i.e., using the networking daemon of the Blackhawk prototype. The
current implementation of subscribing to topology relevant information relies on kevent
registration and enforces the reception of publications coming over the Rendezvous Node.
Therefore, the connectivity helper’s locally generated publications are not prioritized over
publications originated on different connectivity helpers coming over the network.

A first performance evaluation of the topology management implementation has been carried
over one-domain and networking scenarios. In a single one-domain setup, all nodes
communicate directly using predefined SId/RId pairs, without the presence of a separate
Rendezvous point as the dispatching entity between publishers and subscribers. In order to
test the topology management functionality using the networking daemon, we created a
network using Virtual Machines running the Blackhawk prototype. In the current setup, we
deploy a network of four nodes, where three of them are native publishers/subscribers, acting
as simple network entities. Each of them runs single instances of the topology manager,
connectivity helper, link-state helper and application helper functions. The remaining node is
responsible for dispatching publications and subscriptions accordingly, thus it has the function
of a Rendezvous node. Results obtained from these initial tests are shown in [6].

2.4 Applications

2.4.1 BitTorrent

We have started developing since the first year of the project a PSIRP-based content
distribution application that draws upon the BitTorrent concepts of breaking down the content
exchange to fixed size pieces and exchanging pieces among peers on a tit-for-tat basis, as
well as upon the PSIRP concepts of network supported rendezvous and native multicast
communications [4]. The main idea in PSIRP-based BitTorrent is that each piece of the
content will use a separate RId. Each peer that already has the piece will be able to act as a
publisher, and each peer that needs the piece will be able to act as a subscriber. PSIRP will
provide the rendezvous between publishers and subscribers and the multicast distribution of
each piece from a publisher to the subscribers.

Despite its similarity with BitTorrent, the PSIRP based application is fundamentally different
than BitTorrent in aspects such as the co-ordination between the multiple publishers of each
piece, so as to avoid duplicate transmissions, the incentives for participation in the data
exchange, which does not need to be based on simple tit-for-tat, and the relationship between
the RIds of the pieces, which could be based on algorithmic identifiers. Due to limitations of
the prototype implementation of the PSIRP architecture however, and especially the lack of
inter-domain rendezvous facilities, it will be impossible to use the prototype to experiment with
these aspects of the application before the end of the project. As it would make no sense to
demonstrate a large scale content distribution application over a broadcast based local area
network, we have shifted the design and evaluation effort for this application to the simulation
platform which provides these facilities via overlays.

2.4.2 Socket emulator

Any proposal that seeks to radically change the architecture of the Internet must plan to co-
exist with the existing Internet for an extended period of time. In particular, in order to be
deployed, a new architecture must ensure that it will be possible to execute existing
applications on top of it. While many applications, especially content distribution ones, can
reasonably be expected to be rewritten so as to operate optimally over an information-centric
architecture, there is a vast number of existing, endpoint-centric, applications that will have to
operate in some type of compatibility mode, preferably without the need to even recompile
them. Since most existing Internet applications were written on top of the widespread Sockets
API, the most direct way to make them compatible with a new architecture is to develop a

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 21(28)

shim layer that transparently translates Socket API calls to the underlying information-centric
calls offered by the new architecture.

To this end, we have designed and implemented a Socket API emulator for PSIRP, which
allows unmodified Internet applications to operate on top of a native publish/subscribe
protocol stack. The emulator transparently maps IP/TCP/UDP addresses to PSIRP SId/RId
pairs and translates most of the socket API calls to the calls provided by the libpsirp API. Due
to the lack of a reliable transport protocol in PSIRP, the effort has focused on fully emulating
datagram sockets, with the full emulation stream sockets left for future work. The socket
emulator is currently working in datagram mode, albeit with limitations on the number of
packets that can be sent to the same socket; this limitation is due to a corresponding limitation
in the number of versions that each publication can have. The implementation of the emulator
follows the evolution of the PSIRP prototype and will be integrated to the main code release
before the end of the project.

2.4.3 Trivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) [5] is an Internet standard for lightweight file transfer
applications, such as remote booting and configuration. It is intentionally very easy to
implement, as it operates on top of UDP, using a stop and wait scheme transport scheme,
which essentially takes care of error, flow and congestion control. As a result, it is an ideal test
case for the socket emulator, which only emulates datagram sockets. We have implemented
TFTP on top of the socket emulator (as well as over native UDP/IP) as a test and
demonstration application.

In order to assess the overhead due to the socket emulator and compare the performance of
native PSIRP as opposed to emulated socket applications, we have also written a
publish/subscribe version of TFTP, that is, a modified application that employs libpsirp calls
instead of socket API calls. This application uses the same approach as the original TFTP,
that is, the stop and wait transport scheme, in order to make the two applications directly
comparable and assess the overhead due to the socket emulator. While this is not an ideal
design for a publish/subscribe network, it is an experiment in straightforward porting of an
Internet application for the PSIRP prototype that could eventually be compared to a
publish/subscribe based design approach. Both the emulated and the native versions of this
application are currently working, with some limitations however due to the corresponding
limitations of the socket API.

2.4.4 Firefox Plugin

Many Web applications nowadays are publish/subscribe in nature, e.g. newsletter, stock
prices, weather forecasts, but the underlying communication paradigm is based on the
send/receive model. As a consequence, protocols are more complex to build and consume
more network resources than necessary. For example, the HTTP long polling protocol
requires constant re-subscription of data after receiving an update, incurring extra control
overhead and bandwidth consumption.

In order to enable Web browsers with native publish/subscribe capabilities, we implemented a
plug-in for the Firefox Web-browser as a front-end for the Blackhawk prototype in the Web.
The plug-in enables PSIRP calls from the user interface and supports Web browsers working
both in a Blackhawk-enabled node or a non Blackhawk-enabled node. In the latter case, we
implemented a pub/sub proxy that encapsulates native pub/sub messages into UDP packets
and vice-versa. In this case, users in the IP domain can use the Firefox plug-in to
transparently publish and subscribe to publications in the psirp protocol domain without
constraints.

The usage of publish/subscribe in the Web presents three main benefits: it allows for real-time
notification capabilities, it reduces the hardware requirements for Web-servers and it also
reduces the overall energy consumption. By subscribing to content instead of placing a
request every time that an update is delivered, we are able to support real-time notifications

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 22(28)

since the receiver's channels are always open, instead of reopening them through the HTTP
request/response model. Second, the usage of the publish/subscribe paradigm reduces state
maintenance in the server since we do not need to maintain open TCP connections with
clients, thus reducing the hardware requirements for Web server. Finally, the reduced number
of messages exchanged in the publish/subscribe paradigm results in lower energy
consumption, being an important parameter for embedded devices such as mobile phones
and notebooks. A thorough evaluation of these gains will be conducted in the near future as
part of the testbed integration.

2.5 Language Bindings
The PSIRP prototype implementation is written in C, therefore C applications can directly
employ the libpsirp API. The current Blackhawk release also includes additional language
bindings for Python and Ruby, two interpreted languages that are ideal for rapid prototyping.
The local rendezvous helper, for example, uses the Python API, while the inter-domain
rendezvous component uses the Ruby API.

The API for Python is, in fact, the most developed one at the moment. Since Blackhawk v0.2
this API has been object-oriented - that is, each publication corresponds to an object in this
system - and includes a set of auxiliary tools that make certain tasks much easier. For
example, it provides an easy way to handle publication updates in an event-driven manner.

Language bindings for Java are also currently being developed in the project. Potentially it will
be possible to develop fast pub/sub applications while still taking advantage of Java’s garbage
collected environment. Moreover, developers can utilize a variety of external tools and
libraries (data structures, graphical user interfaces, etc) developed by the large Java open
source community.

2.6 Example of Current Integration Plans
In D3.4, the integration plan was presented. The following example describes the current
plans that are being implemented. However, the final design will be described in an additional
technical report that will be published at the end of the project.

The following message sequence chart represents the assumed signalling taking place in the
prototype system to enable a subscriber to subscribe a publication. Some explanation to the
terms in the figure:

 R-FId X, return zFilter from the current node to Y. This is collected automatically, as
the packet is forwarded through the network topology.

 NId-X, a node ID that is used to recognize end node X within the network topology.
The TM server is assumed to be able to generate a path from its topology information
based end NIds. TM clients are assumed to advertise their NId within "hello
messages".

 FId X->Y, a zFilter containing path from X to Y.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 23(28)

Figure 13 Basic Publish and Subscribe

3 Open Source Release
During the planning phase, openness was seen as an important element. Accordingly, the
project will publish the implementation as open source to provide external partners with the
possibility of verifying our work, and further develop thei own applications on top of it. During
the project, the core parts of the implementation have been released and they support the
basic publication management with the related API, networking, and packet forwarding inside
the network.

In the following subsections, the released implementations are described in more details.

3.1 Blackhawk
The prototype has been released both as a source code package requiring an existing
FreeBSD OS installation, and as a FreeBSD Virtual Machine image, which can directly be
used for testing by running it in a virtual machine monitor. During the project, two versions of
the prototype code have been released (v0.1 and v0.2). The third release has been scheduled
for May 2010.

The released prototype code has followed the development in the architecture and prototype.
The main features for the upcoming version 0.3 have been described in Section 2 of this
document.

3.2 NetFPGA forwarding implementation
In the release implementation, we identified all unnecessary parts from the NetFPGA
reference switch implementation and removed most of the code that is not required in our
system (see Figure 14: on the left side there is the original reference switch design, and on
the right side the zFilter forwarding design). The removed parts were replaced with a simple
zFilter switch [10].

The current version implements both the LIT and the virtual link extensions, and it has been
tested with four real and four virtual LITs per each of the four interface. We are using our own

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 24(28)

EtherType for identifying zFilter packets. The implementation drops incoming packets with
wrong ethertype, invalid zFilter, or if the TTL value has decreased down to zero.

Our prototype has been implemented mainly in the new output port selector module. This
module is responsible for the zFilter matching operations, including the binary AND operation
between the LIT and zFilter, and comparing the result with the LIT, as well as placing the
packets to the correct output queues based on the matching result. The new module is added
in output queues.

3.3 Packet Level Authentication (PLA)
The source code of the PLA library (libpla) v0.1 has been released under the GPL and
FreeBSD licences. The released libpla library basically contains all the PLA functionality used
by the PSIRP prototype as described in D3.3. It supports PLA header generation and
verification, along with functionality for certificate and key management.

The library has been tested on FreeBSD and Linux, and it can be also used with other
applications and networking solutions. For example, the libpla library has been used in a
master's thesis describing a wireless WPLA architecture [11]. The thesis also utilizes libpcap
and libnet libraries for IP communication in conjunction with the libpla library.

3.4 Documentation
The documentation with installation instructions is maintained in the PSIRP project’s wiki
pages [7]. The wiki page was selected due to easiness of maintenance. External partners are
also allowed to ask for permission to edit the pages.

4 PSIRP Testbed
During its 3-month extension, PSIRP will establish a testbed facility that will enable us to
showcase the integration work, as well as isolated technologies that have been developed
within PSIRP. The following section outlines the setup, utilized implementations and
applications within this testbed.

4.1 Testbed Set-up
The testbed utilizes the current node implementation, i.e., the Blackhawk implementation.
Several nodes, depending on availability of hardware, are installed at various partner sites
(see below). The local nodes at each site are directly connected through Ethernet. Each local
site is interconnected with other sites through an openVPN configuration, i.e., Ethernet frames

Figure 14 Reference switch modifications

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 25(28)

are tunnelled via the public Internet. This will also allow for public demonstrations through
laptop setups, i.e., a local demo (with one or more laptops) can be connected to the overall
setup, assuming that proper openVPN configuration and authorization is in place. The
openVPN server is currently installed at the University of Essex.

Initially, the different sites are administered as a single PSIRP domain with a single topology
manager [12]. Eventually, however, each site will be configured as a single PSIRP domain to
fully enable inter-domain operations. Also, a flexible rendezvous configuration will be
implemented, based on the current rendezvous point implementation. All forwarding elements
implement packet forwarding with in-packet Bloom filters. The Link Identities will be based on
either fixed LIDs or Z-formation based LID calculations (using Z-formation requires support
from the Topology Manager). Furthermore, several partners have expressed interest to setup
forwarding nodes based on the existing NetFPGA implementation for the Bloom filter
forwarding approach, based on fixed LITs and/or Z-formation based LITs.

The currently envisioned setup for the testbed until the end of September is:

 Essex University (non-PSIRP partner): 5 PSIRP nodes, acting as publishers and/or
subscribers as well as forwarding nodes

 Cambridge University: 2 PSIRP nodes

 RWTH-Aachen University: up to tens of PSIRP nodes through cluster machines setup

 Athens Universityof Economics and Business: 2 PSIRP nodes

 HIIT: Two NetFPGA forwarding nodes and other dedicated nodes

 IPP-BAS: at least 2 dedicated machines

With this initial setup, in the order of ten or more distributed machines are configured while
having additional cluster capabilities. As an additional site, discussions are ongoing with MIT
to setup at least one or two machines as a PSIRP domain in the US.

4.2 Virtual Test Bed Set-up
Psnet is a set of Bash scripts that automate the process of using virtual machines for PSIRP
Blackhawk prototype testing, validation and development. The scripts were developed to
provide a shell (vmShell) to the developer that can create, destroy, configure and etc. the
virtual setup.

All tasks for starting, stopping, logging into, configuring VMs are automated by single and
simple commands.

Using predefined custom topology files the 'load' command can build the defined network
topology. Interconnection between VMs and the host is performed automatically using TAPs
and bridges. If a netiod configuration is not available, it is generated for all VMs. zFilters are
configured properly even if the route to the RN node is going through forwarding nodes. For
now only setups with 1 rendezvous node are supported.

On the created topology we can run different scenarios. With the command 'run_sc' we can
automatically execute the predefined set of commands on specified VMs. Commands are sent
through SSH. The VMs will log the results from those commands and the host will collect the
logs after the scenario has finished.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 26(28)

Basic Usage

A scenario can be executed with only 3 commands.

[User@host psnet]$./psnet

[vmShell] load setup5

....

[vmShell] vm load

...

[vmShell] run_sc sc1

...

[vmShell] quit

Details

All VMs are using only one "FreeBSD 8" image in read-only mode. On boot, each VM uses a
small script (vm_cnf) to identify itself based on its network interface MAC address. NFS is
used to share data between the host and VMs. Because most of the operations in VMs are
network or virtual memory related (/pubsub is a virtual directory), NFS performance is not an
issue.

Logging

All Blackhawk helpers generate output, which can be stored in log files. In order to be able to
read logs, colouring in the helpers output should be switched off. For easier debugging of
pslog files, we wrote a colouring scheme for the text editor gEdit.

Results

The developer (tester) is supported while working with a large number of virtual PSIRP nodes.
The full functionality of the Blackhawk prototype can be tested/evaluated without any
additionally programming on a single server or laptop.

4.3 Applications
Within the multi-site testbed facility, the following applications are envisioned (without any
guarantee that all of them will be realized):

 Simple file transfer: one publisher, one subscriber – see Section 2.4.3

 Non-realtime video streaming: one frame per publication with re-publication of new
frames, one or more subscribers

 Collaborative working (e.g., shared applications): real-time audio/video conferencing,
requiring bidirectional traffic. This is likely to be implemented only at the beta-stage

 Legacy applications through a socket emulator: the socket emulator, implemented at
AUEB, will be utilized for, e.g., audio streaming applications over standard IP – see
Section 2.4.2

 Web applications with modification to the HTTP model: utilizes the Firefox plugin for
the psirp protocol, i.e., metadata document for the rendering is sent with an embedded
RId for active objects such as weather or sensor information – see Section 2.4.4

5 Evaluation of the Work
This section gives an overview of the main components and evaluates their degree of
integration. Evaluation of performance and stability of the components is outside the scope of
this document since it is covered by the upcoming deliverable D4.5.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 27(28)

5.1 Rendezvous Node
The first phase of the rendezvous integration with the local node Blackhawk platform version
0.2 proceeded and finished as planned in D3.4 during autumn 2009: The UDP based
communication module used earlier was replaced with the publish/subscribe Ruby API
provided by Blackhawk and the basic rendezvous mechanism was established on top of it.

The second phase of this integration has been started and is planned be finished during the
first half of 2010. Key elements to be finished in this process are signal format harmonization
and network support (from rendezvous IDs to forwarding IDs).

The interconnection layer part of the rendezvous concept will not be implemented as part of
this work.

5.2 Blackhawk
The PLA has been integrated with Blackhawk, first with version 0.2, and then the necessary
modifications have been made to support the soon to be released version 0.3.

The Network Attachment functionality has not been integrated. The current prototype still
requires manual, configuration file based bootstrap. To support Network Attachment, the
Rendezvous mechanism needs to be adjusted to support advertisements towards the edges
of the network, so that the initial RVS zFilter can be collected for the attaching host. The
integration has not yet been done, and the integration is planned to be done before the final
demonstration.

The transport functionality has been tightly integrated with the Blackhawk implementation. It
was not implemented as a separate module, but merely directly into the system.

5.3 Topology Management
The Topology Management has been adjusted to operate with Blackhawk release 0.3. The
implementation work has been done in close co-operation with the Blackhawk enhancements
since release 0.2.

6 Conclusions
This document is the last deliverable documenting the implementation efforts within PSIRP. It
documents the integration of the various components into a coherent and single prototype.
The integration of implementation towards such a single prototype has been progressing
since the writing of D3.4. For this, we presented the status of this work and the steps
remaining to complete in the remainder of the project.

It can be seen from our presentation that core components like the node platform
(Blackhawk), Topology Management and Rendezvous Node have been coming together
through our integration efforts. This has allowed for envisioning a true networked setup of a
PSIRP network. Such networked setup will be implemented during the extension phase of the
PSIRP project until September 2010 and it will encompass all major partner sites. The multi-
site testbed will allow for showcasing the capabilities of our technologies, the overall
architecture and the potential for new applications. Furthermore, this testbed setup will be
utilized to finalize any integration efforts that are still needed. It will also serve as a starting
point for future efforts as well as an engagement tool with external project efforts.

Overall we conclude that the implementation efforts have been progressing as planned with
major components being successfully implemented in a coherent prototype. Several functions,
such as the inter-domain topology formation function, are still missing due to the ongoing
design efforts in this space. But we are confident that the chosen platform approach and the
current integrative prototype will provide the necessary basis for future extensions.

Document: FP7-INFSO-ICT-216173-PSIRP-D3.5

Date: 2010-05-07 Security: Public

Status: Completed Version: 1.0

PSIRP 28(28)

7 References

[1] D. Trossen (ed.), “Architecture Definition, Components Descriptions and

Requirements”, PSIRP deliverable D2.3, February 2009.

[2] P. Jokela (ed), "Progress Report and Evaluation of Implemented Upper and
Lower Layer Function", PSIRP deliverable D3.3, June 2009.

[3] D. Trossen (ed), “Integration and Demonstration Plan”, PSIRP deliverable
D3.4, September 2009.

[4] G. Xylomenos, K. Katsaros, and V. Kemerlis. Peer assisted content distribution
over router assisted overlay multicast. In Euro-NF Future Internet Architecture
Workshop, 2008.

[5] K. Sollins, The TFTP Protocol (Revision 2), Internet Request for Comments
1350, 1992.

[6] J. Riihijärvi (ed.), "Final architecture validation and Performance Evaluation
Report", PSIRP deliverable D4.5, April 2010.

[7] PSIRP Prototype Documentation, http://wiki.hiit.fi/display/psirpcode/Home

[8] FreeBSD Architecture Handbook, “http://www.freebsd.org/doc/en/books/arch-
handbook/”, referred 29th of April, 2010.

[9] P. Jokela (ed.), “Implementation Plan based on Conceptual Architecture”,
PSIRP deliverable D3.2, September 2008.

[10] Jari Keinänen, Petri Jokela, Kristian Slavov, Implementing zFilter based
forwarding node on a NetFPGA, NetFPGA Developers Workshop, August 13-
14, 2009, Stanford, CA.

[11] A. Al Hasib. Design and implementation of Wireless Packet Level
Authentication (WPLA). Master's thesis, Helsinki University of Technology,
Espoo, Finland, 2009.

[12] M. Ain (ed.), “Update on the Architecture and Report on Security Analysis”,
PSIRP deliverable D2.4, September 2010..

