
LIPSIN: Line Speed Publish/Subscribe Inter-Networking

Petri Jokela1, András Zahemszky1, Christian Esteve Rothenberg2,
Somaya Arianfar1, and Pekka Nikander1

1 Ericsson Research, NomadicLab, Finland
{petri.jokela, andras.zahemszky, somaya.arianfar, pekka.nikander}@ericsson.com

2 University of Campinas (UNICAMP), Brazil
chesteve@dca.fee.unicamp.br

ABSTRACT
A large fraction of today’s Internet applications are inter-
nally publish/subscribe in nature; the current architecture
makes it cumbersome and inept to support them. In essence,
supporting efficient publish/subscribe requires data-oriented
naming, efficient multicast, and in-network caching. De-
ployment of native IP-based multicast has failed, and over-
lay-based multicast systems are inherently inefficient. We
surmise that scalable and efficient publish/subscribe will re-
quire substantial architectural changes, such as moving from
endpoint-oriented systems to information-centric architec-
tures.

In this paper, we propose a novel multicast forwarding
fabric, suitable for large-scale topic-based publish/subscribe.
Due to very simple forwarding decisions and small forward-
ing tables, the fabric may be more energy efficient than the
currently used ones. To understand the limitations and po-
tential, we provide efficiency and scalability analysis via sim-
ulations and early measurements from our two implementa-
tions. We show that the system scales up to metropolitan
WAN sizes, and we discuss how to interconnect separate
networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.6 [Computer-Communica-
tion Networks]: Internetworking

General Terms
Design

Keywords
Bloom filters, publish/subscribe, multicast, forwarding

1. INTRODUCTION
Many networking applications are internally publish/ sub-

scribe in nature [8]; the actual acts of information creation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

and consumption are decoupled in time and/or space, and
often there are multiple simultaneous receivers. For exam-
ple, RSS feeds, instant messaging, presence services, many
typical web site designs, and most middleware systems are
either based on a publish/subscribe-like information para-
digm or internally implement a publish/subscribe system.

In general, publish/subscribe [15] is a data dissemination
method which provides asynchrony between data producers
and consumers. Key ingredients include handling data itself
as a first class citizen at the naming level, efficient caching
to loosen the coupling between producers and consumers in
the time dimension, and multicast to efficiently disseminate
new data, including both user-published data and system-
internal metadata. In addition to pure pub/sub applica-
tions, peer-to-peer storage systems and some data-center
applications may also benefit from these ingredients [34, 42].

In topic based pub/sub networks, the number of topics is
large while each topic may have only a few receivers [24]. IP
multicast [13] and application level multicast have scalability
and efficiency limitations under such conditions. Similarly,
while multicast is a natural choice for data centers, it has the
drawback of requiring routers to maintain additional state
and performing costly address translations [42]. Hence, the
main challenge in efficient pub/sub network design is how to
build a multicast infrastructure that can scale to the general
Internet and tolerate its failure modes while achieving both
low latency and efficient use of resources.

In this paper, we propose a novel multicast forwarding
fabric. The mechanism is based on identifying links in-
stead of nodes and using Bloom filters [6] to encode source-
route-style forwarding information into the packet header,
enabling forwarding without dependency on end-to-end ad-
dressing. This provides native support for data-oriented
naming and in-network caching. The forwarding decisions
are simple and the forwarding tables are small, potentially
allowing faster, smaller, and more energy-efficient switches
than exists today. The proposed model aims towards bal-
ancing the state between the packet headers and the network
nodes, allowing both stateless and stateful operations.

The presented method takes advantage of ”inverting” the
Bloom filter thinking [9]. Instead of maintaining Bloom fil-
ters at the network nodes and checking if incoming packets
are included in the sets defined by the filters, we put the
Bloom filters themselves in the packets and allow the nodes
on the path to determine which outgoing links the packet
should be forwarded to.

In addition to the design, we briefly describe the two im-
plementations we have built and evaluate the scalability and

195

efficiency of the proposed method with simulations. Further,
we give an indication of the potentially achievable speed
from our early measurements on our NetFPGA-based im-
plementation.

The rest of this paper is organized as follows. First, in
Section 2, we discuss the overall problem and outline the
proposed solution. In Section 3, we go into details of the de-
sign. Next, in Section 4, we provide scalability evaluation of
our forwarding fabric in networks up to metropolitan scales.
Section 5 discusses how to inter-connect multiple networks,
scaling towards Internet-wide systems, and Section 6 briefly
describes our two implementations. Section 7 contrasts our
work with related work, and Section 8 concludes the paper.

2. BACKGROUND AND BASIC DESIGN
Our main focus in this paper is on a multicast forward-

ing fabric for pub/sub-based networking. First, we briefly
describe the overall pub/sub architecture our work is based
on, and then present our forwarding solution, in the con-
text of that architecture. The presented solution, provid-
ing forwarding without end-to-end addressing, is a first step
towards an environment preventing DDoS attacks, as the
data delivery is based on explicit subscriptions. Finally, at
the end of the section, we briefly describe how our proposed
forwarding fabric could be used within the present IP archi-
tecture.

2.1 A pub/sub-based network architecture
In general, pub/sub provides decoupling in time, space,

and synchronization [15]. While publish/subscribe, as such,
is well known, it is most often implemented as an over-
lay. Our work is based on a different approach where the
pub/sub view is taken to an extreme, making the whole sys-
tem based on it. In the work we rely on, inter-networking
is based on topic-based publish/subscribe rather than the
present send/receive paradigm [32, 39, 41].

The overall pub/sub architecture can be described through
a recursive approach, depicted in Figure 1. The same archi-
tecture is applied in a recursive manner on the top of itself,
each higher layer utilising the rendezvous, topology, and for-
warding functions offered by the lower layers; the idea is
similar to that of the RNA architecture [20] and the one
described by John Day [12]. At the bottom of the architec-
ture lies the forwarding fabric, denoted as “forwarding and
more”, the main focus of this paper.

The structure can be divided into a data and control
plane. At the control plane, the topology system creates a
distributed awareness of the structure of the network, simi-
lar to what today’s routing protocols do. On the top of the
topology system lies the rendezvous system, which has the
responsibility of handling the matching between the pub-
lishers and subscribers. The rendezvous does not need to
differ substantially from other topic-based pub/sub systems;
cf. [15, 23, 36]. Whenever it identifies a publication that has
both a publisher (or an up-to-date cache) and one or more
active subscribers, it requests the topology system to con-
struct a logical forwarding tree from the present location(s)
of the data to the subscribers and to provide the publisher
(or the caches) with suitable forwarding information for the
data delivery. While being aware of the scalability require-
ments for rendezvous and topology systems, we do not de-
scribe them in details, but refer to our ongoing work in these
areas [41, 45].

Forwarding and more

Topology

Rendezvous

Rendezvous

Forwarding and more

Topology

T r a n s p o r t

For-
war-
ding

 Network
coding

Frag-
mentation

Caching

Error
correction

Rendez-
vous

Topol-
ogy

Figure 1: Rendezvous, Topology, Forwarding

The data plane takes care of forwarding functionality as
well as traditional transport functions, such as error detec-
tion and traffic scheduling. In addition to that, a number of
new network functions are envisioned (referred to as more),
such as opportunistic caching [14, 40] and lateral error cor-
rection [3].

The data and control plane functions will work in concert,
utilizing each other in a component wheel [41], similar to the
way Haggle managers are organized [33] into an unlayered
architecture, providing asynchronous way of communicating
between different functional entities in a node.

In this paper, we focus on the forwarding layer, including
the required information needed to be passed to it. The ren-
dezvous and topology systems have responsibility for higher-
layer operations, such as scalable handling of publish/sub-
scribe requests (multicast tree join/leave in IP); they do not
affect the forwarding performance directly.

2.2 Recursive bootstrapping
To achieve initial connectivity in the pub/sub network, the

rendezvous and topology systems need to be bootstrapped
[30]. Bootstrapping is done bottom-up, assuming that the
layer below offers (static) connectivity between any node and
the rendezvous system. At the lowest layer, this assumption
is trivially true, since any two nodes connected by a shared
link (wireline or wireless) can, by default, send packets that
the other node(s) can receive.

During the bootstrap process, the topology management
functions on each node learn their local connectivity, by
probing or relying on the underlying layer to provide the in-
formation. Then, in a manner similar to the current routing
protocols, they exchange information about their perceived
local connectivity, creating a map of the network graph
structure. The same messages are also used to bootstrap
the rendezvous system, allowing the dedicated rendezvous
nodes to advertise themselves [32, 41].

2.3 Forwarding on Bloomed link identifiers
In our approach, we do not use end-to-end addresses in

the network, and instead of naming nodes, we identify all
links with a name. To forward packets through the net-
work, we use a hybrid, Bloom-filter-based approach, where
the topology system both constructs forwarding identifiers
by encoding the link identifiers into them in a source routing
manner (see Figure 2), and on demand installs new state at
the forwarding nodes. In this section, we present the basic
ideas in a somewhat simplified form, ignoring a number of
details such as loop prevention, error recovery, etc., which
are described in Section 3.

196

Figure 2: Example of Link IDs assigned for links, as
well as a publication with a zFilter, built for forward-
ing the packet from the Publisher to the Subscriber.

For each point-to-point link, we assign two identifiers,
called Link IDs, one in each direction. For example, a link

between the nodes A and B has two identifiers,
−→
AB and

←−
AB.

In the case of a multi-point (e.g. wireless) link, we consider
each pair of nodes being connected with a separate link.
With this setup, we do not need any common agreement
between the nodes on the Link IDs – each Link ID may be
locally assigned, as long as the probability of duplicates is
low enough.

Basically, a Link ID is an m-bit long name with just k
bits set to one. In Section 4 we will discuss the proper
values for m and k, and what are the consequences if we
change the values. However, for now it is sufficient to note
that typically k � m and m is relatively large, making the
Link IDs statistically unique (e.g., with m = 248, k = 5, #
of Link IDs ≈ m!/(m− k)! ≈ 9 ∗ 1011).

The topology system creates a graph of the network us-
ing Link IDs and connectivity information. When it gets a
request to determine a forwarding tree for a certain publi-
cation, it first creates a conceptual delivery tree using the
network graph and the locations of the publisher and sub-
scribers. Once it has such an internal representation of the
tree, it knows which links the packets need to pass, and it
can determine when to use Link IDs and when to create
state [45]. The topology layer is also responsible for react-
ing to changes in the delivery tree, caused by changes in the
subscriber set.

In the default case, we use a source-routing-based ap-
proach which makes forwarding independent from routing.
Basically, we encode all Link IDs of the tree into a Bloom
filter, and place it into the packet header. Once all link
IDs have been added to the filter, a mapping from the data
topic identifier to the BF is handed to the node acting as the
data source and can be used for data delivery along the tree.
The representation of the trees in packet headers is source
specific and different sources are very likely to use different
BFs for reaching the same subscriber sets. To distinguish
the BFs in the actual packet headers from other BFs, we
refer to the in-packet Bloom filters as zFilters1.

1The name is not due to zFilter.com nor the e-mail filter
of the same name, but due to one of the authors reading

Each forwarding node acts on packets roughly as follows.
For each link, the outgoing Link ID is ANDed with the zFil-
ter in the packet. If the result matches with the Link ID, it
is assumed that the Link ID has been added to the zFilter
and that the packet needs to be forwarded along that link.
With Bloom filters, matching may result with some false
positives. In such a case, the packet is forwarded along a
link that was not added to the zFilter, causing extra traffic.
This sets a practical limit for the number of link names that
can be included into a single zFilter.

Our approach to the Bloom filter capacity limit is twofold:
Firstly, we use recursive layering [12] to divide the network
into suitably-sized components; see Section 5. Secondly, the
topology system may dynamically add virtual links to the
system. A virtual link is, roughly speaking, a unidirectional
delivery tree that consists of a number of links. It has its
own Link ID, similar to the real links. The functionality in
the forwarding nodes is identical: the Link ID is compared
with the zFilter in the incoming packets, and the packet is
forwarded on a match.

2.4 Forwarding in TCP/IP-based networks
While unicast IP packets are forwarded based on address

prefixes, the situation is more complicated for multicast. In
source specific multicast (SSM) [19], interested receivers join
the multicast group (topic) and the network creates specific
multicast state based on the join messages. The state is
typically reflected in the underlying forwarding fabric, for
example, as Ethernet-level multicast groups or multicast for-
warding state in MPLS fabrics.

From the IP point of view, LIPSIN can be considered as
another underlying forwarding fabric, similar to Ethernet
or MPLS. When an IP packet enters a LIPSIN fabric, the
edge router prepends a header containing a suitable zFilter,
see also Sect. 5.1; similarly, the header is removed at the
egress edge. For unicast traffic, the forwarding entry simply
contains a pre-computed zFilter, designed to forward the
packet through the domain to the appropriate egress edge.

For SSM, the ingress router of the source needs to keep
track of the joins received on multicast group through the
edge routers, just like any IP multicast router would need to.
Hence, it knows the egress edges a multicast packet needs to
reach. Based on that information, it can construct a suitable
zFilter from the combination of physical or virtual links to
deliver the packets, leading to more flexibility and typically
less state than in current forwarding fabrics.

3. DESIGN DETAILS AND EXTENSIONS
In this section, we present the details of our link-identity-

based forwarding approach. We start by giving a formal
description of the heart of the forwarding design, the for-
warding decision. Then, we focus on enhancements of the
basic design: Link ID Tags generation and selection of can-
didate Bloom filters. Next, we discuss additional features
that make the scheme practical: virtual links, fast recovery
after failures, and loop prevention. In the end, we consider
control messages and return paths.

3.1 Basic forwarding method
The core of our forwarding method, the forwarding deci-

sion, is based on a binary AND and comparison operations,

Franquin’s Zorglub for the Nth time during the early days
of the presented work. The name stuck.

197

Figure 3: An example relation of one Link ID to the
d LITs, using k hashes on the Link ID.

both of which are very simple to implement in hardware.
The base decision (Alg. 1), i.e. whether to forward on a
given outbound link or not, can be easily parallelised, as
there are no memory or other shared resource bottlenecks.
From now on, we build an enhanced system on the top of
this simple forwarding operation.

Algorithm 1: Forwarding method of LIPSIN

Input: Link IDs of the outgoing links; zFilter in the
packet header

foreach Link ID of outgoing interface do
if zFilter & Link ID == Link ID then

Forward packet on the link
end

end

3.2 Link IDs and LITs
Due to the nature of Bloom filters, a query may return

a false positive, leading to a wrong forwarding decision. To
reduce the number of false positives, we now introduce Link
ID Tags (LITs), as an addition to the plain Link IDs. The
idea is that instead of each link being identified with a single
Link ID, every unidirectional link is associated with a set of
d distinct LITs (Fig. 3). This allows us to construct differ-
ent candidate zFilters and to select the best-performing one
from the candidates, e.g., in terms of the false positive rate,
compliance with network policies, or multi path selection.

The forwarding information is stored in the form of d for-
warding tables, each containing the LIT entries of the active
Link IDs, as depicted in Fig. 4. The only modification of the
base forwarding method is that the node needs to be able to
determine on which forwarding table it should perform the
matching operations; for this, we include the index in the
packet header.

Construction: When determining the actual forwarding
tree based on the network graph, and the locations of the
publisher and subscribers, we can apply various policy re-
strictions (e.g. link-avoidance) and keep traffic engineering
in mind (e.g. balancing traffic load or avoiding temporarily
congested parts of the network). As a result, we get a set
of unidirectional links to be included into the zFilter. The
final step is ORing together the corresponding LITs of the
included links, yielding a candidate BF. As each link has d
different identities, we get d candidate BFs that are “equiv-
alent” representations of the delivery tree. That is, a packet
using any of the candidates will follow, at minimum, all the
network links inserted into the BF.

Selection: Recall that a false positive will result in an

Figure 4: Outgoing interfaces are equipped with d
forwarding tables, indexed by the value in the in-
coming packet.

excess delivery; i.e., a packet will be forwarded over a link
that is not part of the delivery tree. To achieve better per-
formance in terms of lower false positive probability, we first
consider two relatively simple strategies:
(i) Lowest false positive after hashing (fpa): The se-
lected BF should be the one with the lowest false probability
estimate after hashing: min{ρ0

k0 , . . . , ρd
kd}, where ρ is the

fill factor, i.e. the ratio of 1’s to 0’s.
(ii) Lowest observed false positive rate (fpr): Given
a test set Tset of link IDs, the candidate BF can be chosen
after counting for false positives against Tset. The objective
is to minimize the observed false positives when querying
against a known set of Link IDs active in the forwarding
nodes along the delivery tree.

The fpa strategy is simple and aims at lower false posi-
tives rates for any set of link IDs under membership test.
On the other hand, the fpr yields the best performance of
false positives for a specific test set at the expense of higher
computational complexity.

To further enhance fpr, false positives at different places
can be weighted; i.e., we can consider some false positives
less harmful than others. For example, we can avoid for-
warding towards non-peered domains, resource constrained
regions, or into potential loops. We call such selection cri-
teria as link avoidance, since they are based in penalizing
those candidate BFs that yield false positives when tested
against certain links. For example, the following kinds of
criteria could be considered:
(i) Routing policies: A Tset of links to be avoided due to
routing policies.
(ii) Congestion mitigation: A static Tset of links avoided
due to traffic engineering (e.g., low capacity links) and a dy-
namic Tset of congested links.
(iii) Security policies: A Tset of links avoided due to se-
curity concerns.

As a consequence, having multiple candidate representa-
tions for a given delivery tree is a way to minimise the num-
ber of false forwardings in the network, as well as restricting
these events to places where their effects are smallest.

3.3 Stateful functionality
So far, we have considered stateless operations, where each

forwarding node maintains only a static forwarding table

198

storing the LITs. We now carefully introduce state to the
network in the form of virtual links and fast failure recovery.
While increasing hardware and signaling cost, the state re-
duces the overall cost due to increased traffic efficiency when
facing large multicast groups or link failures.

3.3.1 Virtual links
In the case of dense trees, especially when a number of

trees share multiple consecutive links, it becomes efficient to
identify sets of individual links with a separate Link ID and
associated LITs. We call such sets of links as virtual links.
The abstraction introduces the notion of tunnels (or link
aggregation) into our architecture – a notion more general
than traditional one-to-one or one-to-many tunnels, being
able to represent any link sets, including partial one-to-many
trees, forests of partial trees, many-to-one concast trees, etc.

A virtual link may be generated by the topology layer
whenever it sees the need for such a tree. The creation
process consists of selecting the individual links over which
the virtual link is created, assigning it a new Link ID, and
computing the LITs. To finalize the creation process, the
topology layer needs to communicate the Link ID, together
with the LITs, to the nodes residing on the virtual link.

Note that virtual link maintenance does not need to hap-
pen in line speed; there are always alternative ways of send-
ing the same data. For example, if a virtual link is needed
to support a very large multicast tree, the sender can still
send multiple packets instead of one, each covering only a
part of the tree.

Once the virtual link creation process is finished, we can
use a LIT of this virtual link in any zFilter instead of in-
cluding all the individual LITs into it. This reduces the
probability for false positives when matching the zFilter on
the path. On the other hand, adding forwarding table en-
tries into nodes increases the sizes of the forwarding tables.
Given the typical Zipf-distribution of the number of mul-
ticast receivers [24], the sizes of the forwarding tables will
still remain small compared to the current situation with
IP routers. Unfortunately, falsely matching to a virtual link
will mean falsely forwarding packets through the entire con-
nected part of the denoted subgraph; however, this can be
mitigated by careful naming of the virtual links (e.g. more
1-bits than in the case of physical links) and explicitly avoid-
ing these false positives during BF-selection.

3.3.2 Fast recovery
Whenever a link or a node fails, all delivery trees flowing

through the failed component break. In this section, we
consider two approaches for fast re-routing around single
link and node failures.

Our first approach is to replace a failed link with a func-
tionally equivalent virtual link. We call this as VLId-based
recovery. The idea is to have a separate virtual backup path
pre-configured for each physical link ID, to be dynamically
used in case of failure. This virtual backup path has the
same Link ID and LITs as the physical link it replaces, but
is initially inactive to avoid false forwarding.

The main advantage of this solution is that there is no
need to change the packets. Basically, it is enough that the
node detecting a failure sends an activation message over
the replacement path, activating it for both the failed phys-
ical link and any virtual links flowing over the physical link,
and then starts to forward the packets normally. When re-

ceiving the activation message, the nodes along the backup
path reconfigure their forwarding tables, and as a result, the
unmodified packets flow over the replacement path.

Another approach is to have a pre-computed zFilter en-
coding the replacement path. In this method, when a node
detects a failure, it simply needs to add the appropriate
LIT(s) representing the backup path into the zFilter in the
packet. This method does not add any additional signaling
or state to the forwarding nodes, but it increases the prob-
ability of false positives by increasing the fill factor of the
zFilter.

Both of the mechanisms are capable of re-routing the traf-
fic with zero convergence time and without service disrup-
tion. Besides protecting against single link failures, they are
also able to recover from single node failures, if the operator
has configured multiple backup paths or a backup tree to-
wards all the neighbours of the failed node. These two types
of failures cover around 85% of all unplanned outages [27].
In the complex cases where the proposed mechanisms are
not able to perform local rerouting, new zFilters need to be
computed.

3.3.3 Loop prevention
In some cases false positives can result in loops; for in-

stance, consider the case where a zFilter encodes a forward-
ing path A→ B → C, but, due to a false positive, the zFilter
also matches with a separate link C → A, which is used to
forward packets from C to A. Without loop prevention, this
will cause an endless loop of A→ B → C → A. Obviously,
as the constructed delivery tree may cause a loop, we can
still use the fpr method to select only loopless candidate
BFs. However, this does not guarantee loop freeness as the
network changes.

As an alternative solution, we start with each node know-
ing the neighboring nodes’ outgoing Link ID and LITs to-
wards the node itself; we call these the incoming Link ID
and LITs. Now, for each incoming packet, the node checks
the incoming LITs of its interfaces, except the one from
where the packet arrives, and compares them to the zFilter.
A match means that there is a possibility for a loop, and
the node caches the packet’s zFilter and the incoming Link
ID for a short period of time. In case of a loop, the packet
will return over a different link than the cached one. Our
early evaluation is based on this approach and suggests that
a small caching memory does not penalize the performance.

As a third alternative, at the inter-AS level we can di-
vide the links into up, transit, and down ones, and utilise
the valley-free traffic model. As a final method, it remains
always possible to use TTL similar to what IP uses today.

3.3.4 Explicitly blocking false positives
Most false positives cause a packet to be sent to a node

that will drop it. In some cases, the traffic generated as a
result of a false positive should be fully truncated; e.g., in the
case of low capacity or congested links, heavy non-cacheable
traffic flows, or inter-domain link policies it may be necessary
to locally disable forwarding of some traffic. Hence, we need
a means to explicitly block the falsely forwarded traffic flows
at an upstream point.

Therefore, any node can signal upstream a request to
block a specific zFilter over that physical link. This can
be implemented as a “negative” virtual Link ID, where a
match blocks forwarding over the link instead of enabling it.

199

3.4 Control messages, slow path, and services
To inject packets into the slow path of forwarding nodes,

each node can be equipped with a local, unique Link ID
denoting the node-internal passway from the switching fab-
ric to the control processor. That allows targeted control
messages to be passed to one or a few specific nodes, if de-
sired. Additionally, there may be virtual Link IDs attached
to these node-local passways, making it possible to multicast
control messages to a number of forwarding nodes without
needing to explicitly name each of them. If the messages
need to be modified, or even stopped on a node, the simul-
taneous forwarding should be blocked. This can be done
by using zFilters constructed for node-to-node communica-
tion, or using a virtual Link ID especially configured to pass
messages to the slow path and make the forwarding decision
after the message has been processed.

Generalising, we make the observation that the egress
points of a virtual link can be basically anything: nodes,
processor cards within nodes, or even specific services. This
would allow our approach to be extended to upper layers.

Another usage of control messages is collecting a symmet-
ric reverse path from a subscriber to the publisher for the
purpose of e.g. providing feedback. The publisher can ini-
tiate a control message triggering reverse path collection.
Getting the message, each intermediate node bitwise ORs
the appropriate reverse LIT with the path already collected
and forwards it towards the subscriber. When the message
finally reaches the subscriber, it will have a valid zFilter
towards the publisher. The zFilter was created without in-
teracting with the topology system.

4. EVALUATION
We now study some of the design trade-offs in detail.

First, we introduce a few performance indicators, and then
explore scalability limits and system performance. We use
packet-level ns-3 simulations over realistic AS topologies,
gaining insights on the forwarding efficiency of the proposed
solution. Finally, we consider security aspects.

4.1 Performance indicators
A fundamental metric is the false positive rate of the in-

packet Bloom filter. Link ID Tags are already in the form
of m-bit vectors, with k bits set to one, as they are added
to a candidate BFi. An accurate estimate of the basic false
positive rate can be given once the fill factor ρ of the BF is
known. The false positive after hashing fpa is the expected
false positive estimate after BF construction:

fpa = ρk (1)

The fpa-optimized BF selection was introduced in Sec. 3.2
and is based on finding the set of LITs with the smallest
predicted fpa. The observed false positive probability is the
actual false positive rate (fpr) when a set of membership
queries are made on the BF:

fpr =
#Observed false positives

#Tested elements
(2)

Note that the fpr is an experimental quantity and not a
theoretical estimate. The minimum observed fpr of the d
candidate BFs provides a reference lower bound for a specific
BF design.

These two metrics form the basic BF-selection criteria.
While fpa-optimized selection is cheaper in computational

AS 1221 3257 3967 6461 TA2

Nodes (#) 104 161 79 138 65
Links (#) 151 328 147 372 108
Diameter 8 10 10 8 8
Radius 4 5 6 4 5
Avg (Max) degr. 2 (18) 3 (29) 3 (12) 5 (20) 3 (10)

Table 1: Graph characterization of a subset of
router-level AS topologies used in the experiments.

terms, the fpr-optimized selection will give better results as
the actual topology is more precisely considered in this pro-
cess. However, the fpr describes the overall network per-
formance only indirectly. In order to capture better the
actual bandwidth consumption due to false positives, we in-
troduce forwarding efficiency as a metric to quantify the
bandwidth overhead caused by sending packets through un-
necessary links:

fwe =
#Links on shortest path tree

#Links during delivery
(3)

In other words, forwarding efficiency is 100% if the packets
strictly follow the shortest path tree for reaching the sub-
scribers. Consequently, this metric is representative and use-
ful in the scenarios where larger subscriber sets are reached
with multiple smaller delivery trees, or in virtual link scenar-
ios, where false positives may be costly by causing deliveries
over multiple hops.

4.2 Packet level simulations
First, we used the intra-domain AS topologies from Rock-

etfuel [1] to simulate the protocol behaviour. Though not
completely accurate, they are a common (best) practice to
experiment with new forwarding schemes in real world sce-
narios2. A second useful data set is SNDlib [28], from where
we selected the largest network (TA2). The most important
properties of these networks are shown in Table 1.

Using ns-3, we implemented a zFilter-based forwarding
layer and a simple topology module, which computes zFil-
ters based on publisher and subscriber locations and the
actual network map; the selected tree is always defined by
the shortest paths between the publisher and each of the
subscribers. We set m, the size of the BF to 248 bits; a
fair comparison to the IPv6 source and destination fields
(2 · 128). We briefly considered m = 120 and m = 504, but
abandoned the former due to poor performance and the lat-
ter due to relatively small overall gains compared to the per-
packet cost. A more flexible design, allowing m to vary per
packet, is left for further study. We investigated the effect
of different numbers of forwarding tables (d), the number
of subscribers (n), and the different LIT-sets for the nodes
(constant k = 5, variable k ∈ [3, 3, 4, 4, 5, 5, 6, 6]), as well as
different BF-selection strategies.

Stateless forwarding: We present the essence of our
simulation results on Tables 2 and 3. Table 2 contains results
using the fpa selection criteria with the variable distribution

2Recent studies [35] have pointed out some limitations in
Rocketfuel data, suggesting that the number of actual phys-
ical routing elements may be less than inferred by their mea-
surement technique. However, this particular inaccuracy in
the present data places more stress on our mechanism than
the suggested corrected scheme would place.

200

Users AS
Links (#) Efic. (%) fpr (%)

mean 95th mean 95th mean 95th

4

TA2 8.6 12.7 99.92 100 0.02 0
1221 9.7 13.6 98.08 88.89 0.37 2.13
3257 9.6 13.5 99.83 100 0.02 0

8

TA2 15.6 20.0 99.6 94.12 0.2 1.59
1221 16.8 21.3 97.78 90.89 0.54 2.02
3257 17.9 22.9 98.95 91.3 0.28 1.25

16

TA2 25.7 30.9 97.92 91.67 0.83 2.67
1221 27.4 31.0 95.51 88.22 1.28 3.17
3257 31.3 36.7 92.37 79.58 1.76 3.86

24

TA2 34.1 38.8 95.2 87.18 1.95 4.63
1221 36.1 41.0 92.06 83.33 2.65 5.19
3257 42.2 48.1 82.27 67.69 4.17 6.96

32

TA2 41.4 46.0 92.04 84.31 3.46 6.46
1221 44.0 48.3 88.22 78.95 4.32 7.45
3257 52.2 57.9 71.47 59.34 7.3 10.41

Table 2: ns-3 results for d=8, variable k-distr.

Users AS
links fprfpa (%) fprfpr (%) Stdrd
mean kc kd kc kd k = 5

8

TA2 15.6 0.12 0.2 0 0 0.18
1221 16.83 0.44 0.54 0.26 0.26 0.55
3967 17.72 0.28 0.33 0.03 0.03 0.48
6461 17.18 0.32 0.39 0.06 0.07 0.36

16

TA2 25.7 0.54 0.83 0.01 0.03 0.8
1221 27.37 1.17 1.28 0.36 0.45 1.57
3967 29.04 1.13 1.29 0.24 0.34 1.48
6461 29.31 1.55 1.57 0.71 0.83 1.89

24

TA2 34.1 1.65 1.95 0.38 0.58 2.03
1221 36.14 2.48 2.65 1.21 1.33 3.55
3967 37.65 2.55 2.78 1.31 1.48 3.22
6461 39.60 3.72 3.79 2.81 2.86 4.86

Table 3: Mean fpr values for different configurations.

of k. The performance appears adequate in all of the topolo-
gies, up to 23 subscribers (≈ 32 links); forwarding efficiency
is still above 90% in the majority of the test cases. The
result is much better than multiple unicast, where the same
links would be used multiple times by the same publication.
For example, in AS3257 the unicast forwarding efficiency is
only 43% for 23 subscribers.

Table 3 sheds light on the difference between fpa and fpr
algorithms. There is an interesting relation between the dis-
tribution of k and the optimization strategies: in our region
of interest, kc = 5 performs better than the variable k dis-
tribution (kd). As expected, fpr-optimization successfully
reduces the false positive rate, and outperforms the non-
optimised (d = 1) approach by 2–3 times in the scenarios
with 16 users. The gain of using fpa instead of the non-
optimised algorithm is clear, although not as significant as
with fpr. These improvements can be also observed in the
sample results of AS6161, see Fig. 5.

Of course, as the link IDs are inserted into the zFilters,
delivery trees are only present in the packet headers, and
therefore completely independent from each other. Hence,
the number of simultaneous active trees does not affect the
forwarding performance.

Stateful forwarding: In networks with scale-free prop-
erties, a large part of the traffic flows between high-degree
hubs. We experimented with the effects of installing virtual

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

fo
rw

ar
di

ng
 e

ffi
ci

en
cy

 (
%

)

fa
ls

e
po

si
tiv

e
ra

te
 (

%
)

Users (1 publisher and N-1 subscribers)

False positive and forwarding efficiency evaluation in AS6461 (d=8, k=5)

Standard zFilter fpr
fpa-opt. zFilter fpr
fpr-opt. zFilter fpr

Standard zFilter fw. eff.
fpa-opt. zFilter fw. eff.
fpr-opt. zFilter fw. eff.

Figure 5: ns-3 simulation results for AS 6461.

 90

 92

 94

 96

 98

 100

 10 20 30 40 50

fo
rw

ar
di

ng
 e

ffi
ci

en
cy

 (
%

)

Nodes covered (%)

Forwarding efficiency evaluation when virtual trees are installed

AS 1221
AS 3257
AS6461

Figure 6: Stateful dense multicast efficiency

links covering different parts of the network. We built vir-
tual links from the publisher towards the core and between
the hubs, but that enhanced the performance only slightly,
as virtual links substituted only a couple of physical links.

Significant performance enhancements can be reached if
we install virtual links rooted at (high-degree) core nodes
and covering a set of subscribers, avoiding thereby the pres-
ence of many LITs in the zFilter. The results on Fig. 6 show
that dense multicast can be supported with more than 92%-
95% forwarding efficiency even if we need to cover more than
50% of the total nodes in the network (cf. Table 2).

Forwarding table sizes: Assuming that each forward-
ing node maintains d distinct forwarding tables, with an
entry consisting of a LIT and the associated output port,
we can estimate the amount of memory we need for the for-
warding tables:

FTmem = d ·#Links · [size(LIT) + size(Pout)] (4)

Considering d = 8, 128 links (physical & virtual), 248-bit
LITs and 8 bits for the outport, the total memory required
would be 256Kbit, which easily fits on-chip.

Although this memory size is already small , we can design
a more efficient forwarding table by using a sparse represen-
tation to store just the positions of the bits set to 1. Thereby,
the size of each LIT entry is reduced to k ·log2(LIT) and the
total forwarding table requires only ≈ 48Kbit of memory, at
the expense of the decoding logic.

4.3 Discussion
To support larger trees than we can comfortably address

with a single zFilter, two choices can be considered. First,
we can create virtual links to maintain the fill factor and
to keep the overdeliveries under control. This comes at the

201

price of control traffic and the increase of state in forwarding
nodes. Second, we can send multiple packets: instead of
building one large multicast tree we can build several smaller
ones, thereby keeping zFilters’ fill factor reasonable. The
packets will follow the desired route with acceptable false
delivery rates, but exact copies will pass through certain
links where the delivery trees overlap. Depending on the
scenario specifics, this can result in more bandwidth waste
than in the case of a single larger tree.

So far, we have calculated the performance of zFilters for
specific sized subscriber sets. A further step is to estimate
the overall performance of the network, where the traffic ma-
trix is consisting of a large variety of different subscriber sets.
Here we rely on current systems centered around dissemi-
nating information objects. First, according to RSS work-
load data collected at Cornell, the number of subscribers
for different topics follows a Zipf distribution [24]. Second,
YouTube video popularity also shows a power-law distribu-
tion in a campus network [17]. Third, IPTV channel pop-
ularity [11] was measured to have the same characteristics
even with a faster drop in the case of unpopular channels
than the Zipf-distribution would suggest. Fourth, in typical
data centers there is a need for a large number of multicast
groups, albeit all contain only a small amount of receivers [5].

Based on these observations, assuming a long tail in the
popularity of topics, with m = 248 our results confirm that
our fabric needs no forwarding state for the large majority
of topics and requires virtual links or multiple sending only
for the few most popular topics. This is a clear advantage
compared to IP multicast solutions, where even the small
groups need forwarding states in the routers. Furthermore,
as we can freely combine the stateful and stateless methods,
we can readily accommodate a number of changes in the
popular topics before needing to signal a state change in the
network, avoiding unnecessary communication overhead.

4.4 Security
The probabilistic nature of Bloom filters directly provides

the basis for most of our security features. Furthermore, as
zFilters are location specific, it is unlikely that any given
zFilter could induce any usable traffic if used outside of its
intended links. Without knowledge of the actual network
graph, including the active Link IDs and LITs, it is unprac-
tical trying to guess a zFilter that would reach any particular
set of nodes.

In a simple zFilter contamination attack, the attacker tries
to get a single packet to be broadcasted to all possible links
by using a BF containing a large amount of 1’s (or even only
1’s). A simple countermeasure for such attack, also observed
in [44], is to limit the fill factor, e.g., to 50–70%. We have
implemented this in hardware, without causing any addi-
tional delay. As a result, a randomly generated zFilter will
match outgoing links only at the false positive rate resulting
from the maximal allowed fill factor.

In a more advanced attack, combining a LIT learning at-
tack and a zFilter re-use attack, an attacker may first at-
tempt to figure out the LITs of the links nearby it by at-
tempting to lure lots of subscribers from different parts of
the network. The attacker learns a number of valid zFil-
ters originating at it and, using AND for the received LITs,
guesses the LITs of the next few links. This attack, however,
requires a lot of work, and there are a few direct counter-
measures. First, the number of parallel LIT’s close to the

publisher can be increased and the uplink Link IDs can be
changed more often. Second, by varying the selection of the
Bloom filter (Sec. 3.2), though not optimal, we may increase
the probability that the attacker gets a too full zFilter.

More generally, we can avoid many of the known, and
probably a number of still unknown attacks, by slowly chang-
ing the Link IDs over time. Our on-going work is focusing
on hash chains and pseudo-random sequences in this area,
meaning that with a shared secret between the individual
forwarding nodes and the topology system the control over-
head of communicating the changes could be kept at a min-
imum. The caveat would be that the zFilters being used in
the network need to be re-calculated once in a while.

Overall, no forwarding state is created if there aren’t a
fairly large number of subscribers that have explicitly in-
dicated their interest in data delivery. We thereby avoid
the typical problems of multicast routers maintaining state
of unnecessary multicast groups, e.g., an attacker joining
many low-rate multicast groups.

Finally, consider a situation where an attacker has suc-
cessfully launched a DDoS attack. Initially, the victim can
quench the packet stream by requesting the closest upstream
node to filter traffic according to the operation defined in
Section 3.3.4. After that, the LITs on the forwarding nodes
can be changed to extinguish the attack. However, the latter
is a slower operation, requiring updates to the topology layer
and recalculation of zFilters for affected active subscriptions.
Additional future work will consider how legitimate traffic
can exploit the multi-path capabilities of the zFilters.

5. FEASIBILITY
We now turn our attention to the overall feasibility of

our approach, focusing on the inter-networking aspects. In
particular, we consider how our forwarding fabric can be
extended to cover inter-domain forwarding. We discuss the
efficiency and scalability aspects for the pure pub/sub case.
For the IP-based multicast case, described in Section 2.4,
we need to use currently existing mechanisms, limiting the
breadth of the issues. We also discuss how the proposal is
(slightly) better than IP in supporting data-oriented naming
and in-network caching.

5.1 Full connectivity abstraction
As mentioned in Sect. 2, the overall architecture we rely

on is based on a recursive approach, where each layer pro-
vides a full connectivity abstraction. Hence, to implement
inter-domain forwarding, we need to attach two forwarding
headers into a packet, an intra-domain and an inter-domain
one, and replace the intra-domain header at each domain
boundary. For IP multicast, the IP header with the IP mul-
ticast address takes the place of the inter-domain header.

To provide the full mesh abstraction, a domain provides
an inter-domain Link ID (IdLId) for each of its neighboring
domains. Furthermore, the domain provides a distinct Link
ID to be added to packets that have local receivers. Hence,
in the inter-domain zFilter of an incoming packet, there is
the incoming IdLId for the link from the previous to this
domain, the outgoing IdLIds for the links from this domain
to any next domains, and if there are any local receivers, the
IdLId denoting their existence.

When we receive a packet from outside, we first may ver-
ify that the packet is forwarded appropriately, e.g., that
the inter-domain zFilter contains the incoming IdLId. Af-

202

Figure 7: Inter-domain forwarding with distributed
RVSs

ter that, we match the zFilter against all outgoing IdLIds,
simultaneously looking up the corresponding intra-domain
zFilters. The intra-domain zFilters can usually be simply
merged. If the inter-domain zFilter indicates local recipi-
ents, more processing is needed.

We assume that the data topic identifier, carried inside the
packet, or other suitable identifier such as an IP multicast
address, is used to index the set of local recipients. For IP
multicast addresses, it is reasonable to expect the edge nodes
to maintain the required state. For the pub/sub case, where
the number of active topics may be huge, the subscriber
information may be divided between a set of intra-domain
rendezvous nodes (see Figure 7), providing load distribution.

Eventually, a rendezvous node looks up the intra-domain
zFilter by using the topic identifier. As it takes time to pass
the packet to the right rendezvous node, and as the lookup
may take some time, the rendezvous nodes can construct
cache-like forwarding maps and distribute them to the edge
nodes.

5.2 Resource consumption
We now estimate the amount of resources needed to main-

tain topic-based forwarding tables, needed for the recursive
layering in the pub/sub case. To estimate the storage re-
quirements, we consider the number of indexable web pages
in the current Internet as a reasonable upper limit for the
number of topics subscribed within a domain. In 2005 there
was around 1010 indexable web pages [18]; today’s number is
larger and we assume it to be around 1011. Considering that
each topic name would take 40 bytes and each forwarding
header takes 32− 34 bytes, in the order ≈ 10 TB of storage
would be needed.

Following the argumentation by Koponen et al [23] and
assuming similar dynamics, it is plausible that even a single
large multi-processor machine could handle the load. How-
ever, a multi-level lookup caching system is needed to reduce
per-packet lookup delay to a reasonable level. For example,
each edge node could cache a few million most active topics,
each rendezvous node could keep in their DRAM a few bil-
lion less active topics, and the information about rest could
be stored on a fast disk array. If only a small fraction of
subscriptions would be active at any given point of time,
the suggested multi-level caching may make it possible to
handle the typical lookup load with just one or a few large
server PCs.

We note that the approach may be problematic for appli-
cations where the inter-packet delay is long but latency re-
quirements are strict. If needed, the problem can be solved

by introducing explicit signaling that would allow certain
topics to be always kept in the cache, even when not ac-
tively used3.

An interesting open problem is to consider potential space
saving techniques, such as determining commonalities be-
tween inter-domain zFilters, perhaps allowing them to be
used as indices. If the topics sharing a single inter-domain
zFilter can be distinguished with only a few bits, it may be
possible to develop clever data structures for compressing
the topic-based forwarding tables.

5.3 Policy compliance and traffic engineering
For the IP case, we expect no real changes to traffic engi-

neering or policies, as the forwarding fabric would be invisi-
ble outside of the domain. In the recursive pub/sub case, we
have to make sure that the inter-domain zFilters are policy-
compliant. As a starting point, each edge node can verify
that all traffic is either received from a paying customer or
passed to a paying customer. However, due to multicast,
there are difficult cases not covered by the typical IP-based
policy compliance rules, such as traffic arriving from one
upstream provider and destined both to a paying customer
and another upstream provider. In general, we will eventu-
ally need a careful study of the issues identified by Faratin et
al [16]. As observed in [30], it is an open problem how the
kind of source routing we propose may change the overall
market place and policies.

Considering traffic engineering, sender-based control would
be easy. At this point, however, open questions include how
the transit operators may affect the paths or how the re-
ceivers can express their preferences. We surmise that those
aspects have to be implemented elsewhere in the architec-
ture, as our forwarding layer can redirect traffic only by
redirecting links.

5.4 Naming and caching
As mentioned earlier, both data-oriented naming and in-

network caching are needed for efficient pub/sub. Our stack
structure and independence of end-node addresses in zFil-
ter forwarding, make both of these functions simpler com-
pared to IP networks. Our architecture treats data as first
class citizens. The focus is on efficient data delivery instead
of connecting different hosts for resource sharing. The de-
fault choice of multicast brings natural separation of ren-
dezvous (addressing/naming) and routing. The resulting
identifier/locator split gives better support for data-oriented
naming than the current IP-based architecture, cf. e.g. [2].
Once routing is based on location-independent identifiers,
any kind of native naming and addressing on the infrastruc-
ture turns out to be a straightforward task.

The zFilter forwarding eases in-network caching by sup-
porting the required decoupling between publishers and sub-
scribers. Publishers can publish data in the network, inde-
pendent of the availability of subscribers. Packet caching
and further delivery from the caches is relatively simple, as
node based addressing is not needed. Caching can also be
used for other purposes, e.g., enhancing reliability. Com-
bining data-oriented naming and caching, we can turn the
traditional packet queues and the sibling recipient memories
into opportunistic indexable caches, allowing, for example,
any node to ask for recent copies of any missed or garbled

3Obviously, such a service would either need strict access
controls or an explicit fee structure.

203

Figure 8: FreeBSD prototype structure

packets; cf. [3, 14]. The fine-grain path control allows us to
easily determine those nodes that may have copies of recent
packets in their memory. Multicast, in turn, allows local
control queries to be sent efficiently. The falling prices of
memory compared to bandwidth indicates the economical
feasibility of our model.

6. IMPLEMENTATION
There are currently two partial prototypes of the sys-

tem. The FreeBSD-based end-node prototype consists of
some 10000 lines of C code, implementing both the pub/sub
subsystem and the forwarding fabric. Our NetFPGA-based
forwarding node prototype has currently some 390 lines of
Verilog, implementing the main ideas from this paper. In
this section, we briefly describe the implementation details
and present early measurements of the NetFPGA forward-
ing module.

6.1 End node
The structure of the end-node prototype is depicted in

Fig. 8. The I/O module implements a few new system
calls for creating new publications (reserving memory ar-
eas), publishing, and subscribing. When allocating mem-
ory for a publication, the pager is set to be a vnode pager,
and the backing file to be in the Filesystem in Userspace
(FUSE)[38]. Hence, each publication is backed up by a vir-
tual file, located in a separate virtual file system running
under FUSE.

Currently, forwarding and other network traffic is handled
in separate threads running within the Pub/Sub daemon,
simply sending and receiving raw Ethernet frames with lib-

net and libpcap. Ethernet frames are always broadcasted,
basically using each Ethernet cable as a point-to-point link,
disregarding any Ethernet bridging or switching.

6.2 Forwarding node
We have implemented an early prototype of a forward-

ing node using Stanford NetFPGA [25]. Starting from the
Stanford reference switch implementation, we removed most
of the for-us-unnecessary code in the reference pipeline and
replaced it with a simple zFilter switch. At this point, we
have implemented the basic LIT and virtual link ideas, and
tested it with 4 real and 4 virtual LITs per interface. With
this configuration, the total usage of NetFPGA resources
for the logic is 4.891 4-input LUTs out of 47.232, and 1.861
Slice Flip/Flops (FF) out of 47.232. No BRAMs are re-
served. For the whole system, the corresponding numbers
are 20.273 LUTs, 15.347 FFs, and 106 BRAMs.

of Average Std. Latency/
NetFPGAs latency Dev. NetFPGA

0 16μs 1μs N/A
1 19μs 2μs 3μs
2 21μs 2μs 3μs
3 24μs 2μs 3μs

Table 4: Simple latency measurement results

To get some understanding of the potential speed, we have
made some early measurements. The first set of measure-
ments, shown in Table 4, focused on the latency of the for-
warding node with a very low load. In each case, the latency
of 10000 packets was measured, varying the number of NetF-
PGAs on the path from zero (direct wire) to three. Packets
were sent at a rate of 25 packets/second; both sending and
receiving was implemented directly in the FreeBSD kernel.

The delay caused by the Bloom filter matching code is
56ns (7 clock cycles), which is insignificant compared to
the measured 3μs delay of the whole NetFPGA processing.
With background traffic, the average latency per NetFPGA
increased to 5μs.

To get an idea of the achievable throughput, we compared
our implementation with the Stanford reference router. This
was quantified by comparing ICMP echo requests processing
times through a plain wire, our implementation, and the ref-
erence IP router with five entries in the forwarding table. To
compensate the quite high deviation, caused by sending and
receiving ICMP packets and involving user level processing,
we averaged over 100 000 samples. The results are shown in
Table 5.

While we did not directly measure the bandwidth (due to
lack of test equipment to reliably fill the pipes), there are no
reasons why the implementation would not operate at full
bandwidth. The code is straightforward and should be able
to keep the pipeline full under all conditions.

7. RELATED WORK
Related work falls into various categories, which we briefly

discuss in the following paragraphs.
Network level multicast: Our basic communication

scheme is functionally similar to IP-based source specific
multicast (SSM) [19], with IP multicast groups replaced by
topic identifiers. The main difference is that we support
stateless multicast for sparse subscriber groups, with uni-
cast being a special case of multicast; IP multicast typically
creates lot of state in the network if one needs to support a
large set of small multicast groups.

In “Revisiting IP multicast” [31], Ratnasamy et al propose
source border routers to include an 800-bit Bloom-filter-
based shim header (TREE_BF) in packets. TREE BFs rep-
resent AS-level paths of the form ASa : ASb in the dissemi-
nation tree of multicast packets. Moreover, a second type of
Bloom filters is used to aggregate active intra-domain mul-
ticast groups piggybacked in BGP updates. The presented
method uses standard IP-based forwarding mechanisms en-
riched with the built-in TREE BF to take the inter-domain
forwarding decisions. However, our multicast fabric uses the
in-packet Bloom filter directly for the forwarding decisions,
removing the need for IP-addresses and proposing Link IDs
as a generic indirection primitive.

204

Path Avg. latency Std. Dev.
Plain wire 94μs 28μs
IP router 102μs 44μs
LIPSIN 96μs 28μs

Table 5: Ping through various implementations

In Xcast [7], source nodes encode the list of multicast
channel destinations into the Xcast header. Each router
along the way parses the header, partitions the destinations
based on each destination’s next hop, and forwards a packet
appropriately until there is only one destination left where
the Xcast packet is unicasted. Our fixed size Bloom filter
approach shares the simplicity and stateless operations of
Xcast while it avoids costly header re-writings and the des-
tination IP packet header overhead.

Data-center applications and multicast: In [4] Bhar-
gava et al discuss the performance achieved with kernel-level
multicast for distributed databases. Due to the problems of
IP multicast, such approaches are not commonly used in
data-center applications. Recently, there has been some ef-
forts on mapping traditional IP multicast to new models to
ease wider use of IP multicast in these applications [42]. Our
approach provides some new ground for considering multi-
cast and explicit routing (e.g., middlebox serialization) in
data-center environments.

Explicit routing: The simplest form of source routing
[37] is based on concatenating the forwarding nodes’ net-
work identifiers on the path between senders and receivers.
Our approach addresses the main caveats of source routing,
including the overhead of having to carry all the routing in-
formation in the packet. Moreover, our approach does not
reveal node or link identifiers, not even to the sending nodes,
nor the sequence or exact amount of hops involved.

GMPLS [26] is being marketed as a solution to provide fast
forwarding. By separating control and forwarding planes, it
introduces more flexibility and promises performance gains,
with the hardware-based fast label switching. However, it
does not directly scale for massive multicast due to the lim-
ited label space and no capability for label aggregation.

In PoMo [29], Poutievski, Calvert, and Griffioen suggest
an approach that trades overdeliveries for reduced state and
reduced dependence of node network locators. In [10], the
same authors propose an architectural approach with link
identities having a pivotal role.

The BANANAS framework [22] is based on encoding each
path as a short hash (PathID) of a sequence of globally
known identifiers. The focus of BANANAS is on host-centric
multipath communications, while ours is centered around
non-global, opaque Link IDs and their compact represen-
tation. Some of the schemes developed in [22] for route
computation and deployability over existing connectionless
routing protocols (e.g., OSPF and BGP extensions) may be
used to support LIPSIN over legacy networks.

Routing and forwarding with Bloom filters: Mul-
tiple flavours of Bloom filters [9] have been proposed to as-
sist the forwarding operations of diverse systems (e.g., P2P,
WSN, pub/sub). In the field of content-based pub/sub [21],
Bloom filters are employed to represent a conjunction of
subscriptions’ predicates (SBSTree) used at content-based
event forwarding time. In comparison, our pub/sub prim-

itives are topic-based and the Bloom filters are built into
packets to carry link IDs and not summarized subscriptions
stored in network elements. Other forms of in-packet Bloom
filters include the loop detection mechanism in Icarus [43],
the credentials-based data path authentication in [44], and
the aforementioned AS-level path representation for IP mul-
ticast [31].

8. CONCLUSIONS
Building on the idea of placing a Bloom filter into data

packets, we have proposed a new forwarding fabric for mul-
ticast traffic. With reasonably small headers, comparable
to those of IPv6, we can handle the large majority of Zipf-
distributed multicast groups, up to some 20 subscribers, in
realistic metropolitan-sized topologies, without adding any
state in the network and with negligible forwarding over-
head. For the remainder of traffic, the approach provides
the ability to balance between stateless multiple sending and
stateful approaches. With the stateful approach, we can
handle dense multicast groups with very good forwarding
efficiency. The forwarding decisions are simple, energy effi-
cient, parallelised in hardware, and have appealing security
properties. All these attributes make our work, in its current
form, a potential choicer for data-center applications.

While a lot of work remains, the results indicate that it
may be feasible to support Internet-wide massive multicast
in a scalable manner. Technically, the main remaining ob-
stacles are related to determining the right local delivery
tree for traffic arriving from outside of a domain. Our cur-
rent proposal scales only linearly. The problems related to
the deployment and business aspects are likely to be even
harder, but fall beyond the scope of this paper.

From a larger point of view, support for massive multi-
cast is but one component needed for Internet-wide pub-
lish/subscribe. The other two components, data-oriented
naming and in-network caching, we touched only indirectly.
However, we hope that our work allows others to build upon
it, allowing experimentation with network architectures that
are fundamentally different from the currently deployed ones.

9. ACKNOWLEDGEMENTS
This research was supported by the EU’s PSIRP project

(FP7-INFSO-IST 216173). The authors thank the SIG-
COMM reviewers and our shepherd Jon Crowcroft for the
comments that helped to improve the paper. We also thank
NomadicLab’s implementation team for their efforts.

10. REFERENCES
[1] Rocketfuel ISP topology data.

http://www.cs.washington.edu/research/networking/
rocketfuel/maps/weights-dist.tar.gz.

[2] B. Ahlgren, L. Eggert, A. Feldmann, A. Gurtov, and
T. R. Henderson. Naming and addressing for
next-generation internetworks. Technical report,
Dagstuhl, 2007.

[3] M. Balakrishnan, K. Birman, A. Phanishayee, and
S. Pleisch. Ricochet: Lateral Error Correction for
Time-Critical Multicast. In NSDI’ 07, 2007.

[4] B. Bhargava, E. Mafla, and J. Riedl. Communication
in the Raid distributed database system. Comput.
Netw. ISDN Syst., 1991.

205

[5] K. Birman, M. Balakrishnan, D. Dolev, T. Marian,
K. Ostrowski, and A. Phanishayee. Scalable Multicast
Platforms for a New Generation of Robust Distributed
Applications. In COMSWARE’ 07, 2007.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 1970.

[7] R. Boivie, N. Feldman, Y. Imai, W. Livens, and
D. Ooms. Explicit multicast (Xcast) concepts and
options. IETF RFC 5058, 2007.

[8] R. Briscoe. The implications of pervasive computing
on network design. BT Technology Journal,
22(3):170–190, 2004.

[9] A. Z. Broder and M. Mitzenmacher. Survey: Network
applications of Bloom filters: A survey. Internet
Mathematics, 2004.

[10] K. L. Calvert, J. Griffioen, and L. Poutievski.
Separating Routing and Forwarding: A Clean-Slate
Network Layer Design. In In proc. of the Broadnets
Conf., 2007.

[11] M. Cha, P. Rodriguez, S. Moon, and J. Crowcroft. On
next-generation telco-managed P2P TV architectures.
In IPTPS ’08, 2008.

[12] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Prentice Hall, 2008.

[13] S. E. Deering and D. Cheriton. Multicast routing in
datagram internetworks and extended LANs. ACM
Trans. on Comp. Syst., 1990.

[14] F. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and
D. Andersen. Ditto - A System for Opportunistic
Caching in Multi-hop Wireless Mesh Networks. In
ACM Mobicom, 2008.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 2003.

[16] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger,
and W. Lehr. Complexity of Internet interconnections:
Technology, incentives and implications for policy. In
TPRC’ 07, 2007.

[17] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube
Traffic Characterization: A View From the Edge. In
ACM SIGCOMM IMC’07., 2007.

[18] A. Gulli and A. Signorini. The indexable web is more
than 11.5 billion pages. In WWW ’05, 2005.

[19] H. Holbrook and B. Cain. Source-specific multicast for
IP. RFC 4607. 2006.

[20] J.D.Touch and V.K.Pingali. The RNA metaprotocol.
In ICCCN ’08, 2008.

[21] Z. Jerzak and C. Fetzer. Bloom filter based routing for
content-based publish/subscribe. In DEBS ’08, 2008.

[22] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar,
and A. Gandhi. Bananas: an evolutionary framework
for explicit and multipath routing in the internet.
SIGCOMM Comput. Commun. Rev., 2003.

[23] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. In SIGCOMM ’07,
2007.

[24] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client
behavior and feed characteristics of RSS, a publish-
subscribe system for web micronews. In IMC’05, 2005.

[25] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,

P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA–an open platform for gigabit-rate network
switching and routing. In MSE ’07, 2007.

[26] E. Mannie. Generalized Multi-Protocol Label
Switching (GMPLS) Architecture. RFC 3945, 2004.

[27] A. Markopoulou, G. Iannaccone, S. Bhattacharyya,
C. Chuah, and C. Diot. Characterization of failures in
an IP backbone. In INFOCOM 2004, 2004.

[28] S. Orlowski, M. Pióro, A. Tomaszewski, and
R. Wessäly. SNDlib 1.0–Survivable Network Design
Library. In INOC’ 07, 2007.

[29] L. B. Poutievski, K. L. Calvert, and J. N. Griffioen.
Routing and forwarding with flexible addressing.
Journal Of Communication and Networks, 2007.

[30] J. Rajahalme, M. Särelä, P. Nikander, and
S. Tarkoma. Incentive-compatible caching and peering
in data-oriented networks. In ReArch’08, 2008.

[31] S. Ratnasamy, A. Ermolinskiy, and S. Shenker.
Revisiting IP multicast. In SIGCOMM’06, 2006.

[32] M. Särelä, T. Rinta-aho, and S. Tarkoma. RTFM:
Publish/subscribe internetworking architecture. ICT
Mobile Summit, 2008.

[33] J. Scott, J. Crowcroft, P. Hui, and C. Diot. Haggle: a
networking architecture designed around mobile users.
In Annual IFIP Conference on Wireless On-demand
Network Systems and Services, 2006.

[34] A. Sharma, A. Bestavros, and I. Matta. dPAM: a
distributed prefetching protocol for scalable
asynchronous multicast in P2P systems. In
INFOCOM’ 05, 2005.

[35] R. Sherwood, A. Bender, and N. Spring. Discarte: a
disjunctive Internet cartographer. SIGCOMM
Comput. Commun. Rev., 2008.

[36] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. In
SIGCOMM’02, 2002.

[37] C. A. Sunshine. Source routing in computer networks.
SIGCOMM Comput. Commun. Rev., 1977.

[38] M. Szeredi. Filesystem in Userspace. Located at
http://fuse. sourceforge. net.

[39] S. Tarkoma, D. Trossen, and M. Särelä. Black boxed
rendezvous based networking. In MobiArch ’08, 2008.

[40] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
and T. Bressoud. Opportunistic use of content
addressable storage for distributed file systems. In
USENIX’ 03, 2003.

[41] D. Trossen (edit.). Architecture definition, component
descriptions, and requirements. Deliverable D2.3,
PSIRP project, 2009.

[42] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan,
K. Birman, and Y. Tock. Dr. multicast: Rx for
datacenter communication scalability. In HotNets-VII,
2008.

[43] A. Whitaker and D. Wetherall. Forwarding without
loops in Icarus. In Proc. of OPENARCH, 2002.

[44] T. Wolf. A credential-based data path architecture for
assurable global networking. In IEEE MILCOM, 2007.

[45] A. Zahemszky, A. Csaszar, P. Nikander, and
C. Esteve. Exploring the pubsub routing/forwarding
space. In International Workshop on the Network of
the Future, 2009.

206

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

